АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

Б1.Б.17 «Процессы и аппараты химической технологии»

<u>по направлению подготовки:</u> 18.03.02 «Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии»

по профилю «Машины и аппараты химических производств»

Квалификация (степень) выпускника: БАКАЛАВР

Выпускающая кафедра: МАХП

Кафедра-разработчик рабочей программы: «Процессов и аппаратов химической технологии»

1. Цели освоения дисциплины

Целями освоения дисциплины «Процессы и аппараты химической технологии»:

- а) формирование знаний о теоретических основах процессов химической технологии и конструкциях аппаратов для их проведения,
- б) обучение технологии получения конечного результата выбора оптимальных режимных параметров протекающих процессов и расчета основных размеров соответствующих аппаратов,
- в) обучение способам применения полученных знаний для решения практических задач,
- г) раскрытие сущности процессов, происходящих в промышленных аппаратах.

2. Содержание дисциплины «Процессы и аппараты химической технологии»

Механизм и уравнения переноса. Иерархия характерных масштабов; способы усреднения; молекулярный, конвективный и турбулентный механизмы переноса; условия макроскопического проявления и направление процессов переноса; выражения для потоков массы, энергии и импульса за счет различных механизмов

Законы сохранения. Законы сохранения массы, импульса и энергии, их математическая запись в интегральной и локальной формах, анализ полученных уравнений, частные случаи (уравнения Навье-Стокса, Эйлера, Бернулли, Фурье-Кирхгофа, нестационарные уравнения Фурье, Фика); исчерпывающее описание процессов переноса, условия однозначности; поля скорости, давления, температуры, концентраций; понятие о пограничных слоях; аналогия процессов переноса

Моделирование. Цели, основные понятия и этапы математического и физического моделирования, теория подобия, проблема масштабного перехода; структура потоков в аппаратах, ее основные характеристики и модели, моделирование структуры потоков с помощью перечисленных методов моделирования

Межфазный перенос субстанций. Вывод уравнений массо-, тепло- и импульсоотдачи в локальной и интегральной формах, подобие соответствующих процессов; определение коэффициентов массо-, тепло- и импульсоотдачи, аналогия процессов массо-, тепло- и импульсоотдачи; уравнения массо-, тепло- и импульсопередачи, определение соответствующих коэффициентов

3. В результате освоения дисциплины обучающийся должен:

- 1) Знать:
- а) основы теории переноса импульса, тепла и массы;
- б) принципы физического моделирования химико-технологических процессов;
- в) основные уравнения движения жидкостей; основы теории теплопередачи; основы теории массопередачи в системах со свободной и неподвижной границей раздела фаз;
- г) типовые процессы химической технологии, соответствующие аппараты и методы их расчета.
- 2) Уметь:
- а) определять характер движения жидкостей и газов;
- б) определять основные характеристики процессов тепло- и массопередачи;

- в) рассчитывать параметры и выбирать аппаратуру для конкретного химикотехнологического процесса.
- 3) Владеть:
- а) методами технологических расчетов отдельных узлов и деталей химического оборудования;
- б) навыками проектирования простейших аппаратов химической промышленности;
- в) методами определения оптимальных и рациональных технологических режимов работы оборудования.

Зав. каф. МАХП

Поникаров С.И.