Министерство образования и науки Российской Федерации Федеральная служба по надзору в сфере образования и науки Федеральное государственное бюджетное образовательное учреждение высшего образования

«Казанский национальный исследовательский технологический университет» (ФГБОУ ВО «КНИТУ»)

УТВЕРЖДАЮ

Проректор по УР А.В. Бурмистров

26» октабря 2017 г.

РАБОЧАЯ ПРОГРАММА

По дисциплине Б1.Б.17.1 «Теоретическая механика, в том числе сопромат»

Код подготовки: 19.03.01

Курс 1, семестр 2

Направление подготовки: Биотехнология

Профиль подготовки: «Биотехнология»

«Пищевая биотехнология»

Квалификация (степень) выпускника Форма обучения Институт, факультет Кафедра-разработчик рабочей программы

БАКАЛАВР ОЧНАЯ ИППБТ, ФПИ ТМиСМ

Наименование	Часы	Зачетные единицы
Лекции	18	0,5
Практические занятия	18	0,5
Самостоятельная работа	36	1
Форма аттестации: экзамен	36	1
Всего	108	3

Рабочая программа составлена с учетом требований Федерального государственного образовательного стандарта высшего образования (приказ МИНОБРНАУКИ России от 11.03.2015 № 193) по направлению 19.03.01 — Биотехнология для профилей подготовки: «Биотехнология», «Пищевая биотехнология». Для набора обучающихся 2015-2017 г.г.

Типовая программа по дисциплине отсутствует.

Разработчик программы: доцент каф. ТМ и СМ (должность)	(подпись)	<u>Убайдуллоев М.Н.</u> (Ф.И.О)
Рабочая программа рассмотрена и од протокол от <i>20.10</i> 2017 г. №	7	едры <u>ТМиСМ</u>
Зав. кафедрой ТМ и СМ, профессор	(подпись)	<u>М.Н. Серазутдинов</u> (Ф.И.О.)
согласовано:		
Протокол заседания методической к	омиссии $\Phi \Pi U$ от $\frac{2}{}$	6.10, 2017 r. № <u>2</u>
Председатель комиссии, профессор	(подпись)	Поливанов М.А.
	united the second	
УТВЕРЖДЕНО:		
Протокол заседания методической к	омиссии ФЭМТО	от <u>25.10 </u>
Председатель заседания методическ	ой	
комиссии ФЭМТО, доцент	(подпись)	М.С. Хамидуллин
	MM ₂	
Начальник УМЦ, доцент	//////////////////////////////////////	Л.А.Китаева

1. Цели освоения дисциплины

Целями освоения дисциплины Б1.Б.17.1 «Теоретическая механика, в том числе сопромат» являются

- а) формирование знаний об общих законах движения, равновесия и прочности материальных твёрдых тел под действием систем сил и умение применять их для решения прикладных задач,
 - б) обучение умению составлять и решать уравнения равновесия твёрдых тел,
- в) обучение способам применения полученных знаний для составления математических моделей различных видов движения тел,
- г) формирование знаний о прочности, жесткости и устойчивости как необходимых условий надежности технологических машин и оборудования.

2. Место дисциплины в структуре ООП ВО

Дисциплина Б1.Б.17.1 «Теоретическая механика, в том числе сопромат» относится к базовой части ООП по направлению подготовки 19.03.01 — Биотехнология по профилю подготовки: «Биотехнология», «Пищевая биотехнология». Дисциплина «Теоретическая механика, в том числе сопромат» формирует у бакалавров набор общепрофессиональных знаний и компетенций, необходимых для применения математических методов моделирования технологических процессов и для понимания окружающего мира и явлений природы.

Для успешного освоения дисциплины «Теоретическая механика, в том числе сопромат» бакалавр по направлению подготовки 19.03.01 – Биотехнология должен освоить материал предшествующих дисциплин:

- а) Б1.Б.6 Математика;
- б) Б1.Б.7 Информатика;
- в) Б1.Б.8 Физика.

Дисциплина «Теоретическая механика, в том числе сопромат» является предшествующей и необходима для успешного усвоения последующих дисциплин: Б1.Б.17.2 Детали машин; Б1.Б.19 «Процессы и аппараты биотехнологии»; Б1.Б.20 «Безопасность жизнедеятельности».

Знания, полученные при изучении дисциплины Б1.Б.17.1 «Теоретическая механика, в том числе сопромат» могут быть использованы при прохождении практик (учебной, производственной, преддипломной) и выполнении выпускных квалификационных работ по направлению подготовки «Биотехнология».

3. Компетенции обучающегося, формируемые в результате освоения дисциплины:

ОПК-2 – способностью и готовностью использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования теоретического и экспериментального исследования;

ОПК-3 — способностью использовать знания о современной физической картине мира, пространственно-временных закономерностях, строении вещества для понимания окружающего мира и явлений природы.

В результате освоения дисциплины обучающийся должен:

- 1) Знать: а) теоретические основы механики абсолютно твёрдого и деформируемого тела;
 - б) методы, применяемые при исследовании равновесия твердого тела;
 - в) методы, применяемые при исследовании механического движения тел;
- г) методы, применяемые при решении задач прочности, жесткости и устойчивости элементов конструкций.
- 2) Уметь: а) определять условия равновесия твёрдых тел;
- б) определять траектории, скорости и ускорения точек твёрдого тела при различных видах движения тела;
- в) применять основные аналитические методы решения типовых задач о движении твёрдого тела;
 - г) решать задачи прочности, жесткости и устойчивости деформируемых тел.
- 3) *Владеть*: а) основными методами решения задач механики и применять их в практической деятельности;
- б) основными методами расчёта задач при равновесии и движении твёрдых тел и материальных точек;
- г) методами решения задач прочности, жесткости и устойчивости элементов конструкций как необходимых условий надёжности технологических машин.

4. Структура и содержание дисциплины «Теоретическая механика, в том числе сопромат»

Общая трудоёмкость дисциплины составляет 3 зачетные единицы, 108 часов.

	Тема дисциплины	емест-	Виды учебной работы (в часах) Лек- Прак- Лабо- СРС				Формы текущего контроля успе- ваемости (по неде-
№ п/п		Неделя семест- ра	ции	тиче- ские заня- тия	ратор- ные рабо- ты		Защита РГР Тестирование Тестирование Тестирование
1	Введение. Кинематика точки. Поступательное и вращательное движения твердого тела	1	2	2	-	18	,
2	Система сходящихся сил. Система параллельных сил.	3	2	2	-		Тестирование
3	Произвольная плоская система сил. Центр тяжести тел	5	2	2	-		Тестирование
4	Законы динамики. Первая задача динамики. Принцип Даламбера	7	2	2	-		Тестирование
5	Вторая задача динамики. Предмет и задачи сопро-	9	2	2	-		Защита РГР, тестирование

	тивления материалов						
6	Метод сечений. Внутренние силы. Растяжение и сжатие стержней	11	2	2	-		Тестирование
7	Чистый и поперечный изгиб	13	2	2	-	18	Контроль на экзамене
8	Рациональные формы сечений. Стандартные профили. Сдвиг и кручение	15	2	2	-		Контроль на экзамене
9	Устойчивость сжатых стержней. Прочность при действии переменных нагрузок. Концентрация напряжений	17	2	2	-		Контроль на экзамене
	Всего		18	18	-	36	36 (экзамен)
	Итого: 108 часов.						

5. Содержание лекционных занятий по темам

№ п/п	Тема лекци- онного заня- тия	ч _{а-} сы	Краткое содержание	Компе- тенции
1	2	3	4	5
1	Введение. Кинематика точки. По- ступатель- ное и вра- щательное и движения твердого тела	2	Предмет, основные понятия и основные разделы теоретической механики. Предмет кинематики. Векторный, координатный и естественный способы задания движения точки. Скорость точки при векторном и координатном способах задания движения. Ускорение точки при векторном и координатном способах задания движения. Радиус кривизны, естественные оси координат. Скорость точки при естественном способе задания движения. Ускорение точки при естественном способе задания движения. Равномерное и равнопеременное движение точки. Поступательное движение твердого тела. Уравнение вращательного движения твердого тела вокруг неподвижной оси. Угловая скорость. Угловое ускорение. Равномерное и равнопеременное вращение твердого тела вокруг неподвижной оси. Скорости и ускорения точек твердого тела, вращающегося вокруг неподвижной оси. Связь между углом поворота и числом оборотов, частотой вращения и угловой скорости.	ОПК-2, ОПК-3
2	Система сходящихся сил. Система параллельны х сил	2	Силы, системы сил. Аксиомы статики. Система сходящихся сил (ССС). Проекции силы на оси координат. Условия равновесия ССС. Выражение векторного момента силы относительно точки с помощью векторного произведения. Момент силы относительно оси. Связь между моментом силы относительно точки и моментом силы относительно оси. Пара сил. Алгебраический и векторный момент пары сил. Алгебраический и векторный относительно точки. Распределённые силы по линии, плоскости и их равнодействующие. Реакции гибкой нити, гладкой поверхности, шарнирно неподвижной опоры, катковой опоры, невесомого стержня с шарнирами на концах, жёсткой заделки, сфериче-	ОПК-2, ОПК-3

			ORON ORONI ROTHINHUMO M ROTHERNIMO	
3	Произвольна	2	ской опоры, подшипника и подпятника. Параллельный перенос силы. Основная теорема статики о	ОПК-2,
	я плоская система сил. Центр тяжести тел		приведении произвольной системы сил (ПСС) к данному центру. Условия равновесия ПСС в векторной и координатной форме. Частные случаи равновесия. Теорема Вариньона. Трение скольжения. Центр системы параллельных сил. Координаты центра тяжести твердого тела.	ОПК-3
4	Законы динамики. Первая задача динамики. Принцип Даламбера	2	Предмет динамики. Законы динамики. Вес и масса тела. Дифференциальное уравнение движения материальной точки. Две задачи динамики материальной точки. Принцип Даламбера для материальной точки.	ОПК-2, ОПК-3
5	Вторая задача динамики. Предмет и задачи сопротивления материалов	2	Интегрирование дифференциального уравнения прямолинейного движения точки в случае постоянной силы. Предмет и задачи сопротивления материалов. Реальный объект и расчётная схема. Основные гипотезы сопротивления материалов.	ОПК-2, ОПК-3
6	Метод сечений. Внутренние силы. Растяжение и сжатие стержней	2	Метод сечения для стержней. Внутренние силы. Диаграммы растяжения и сжатия пластичных и хрупких материалов. Напряжения и деформации при растяжении-сжатии. Закон Гука. Упругие свойства материала. Основные механические характеристики материалов. Допускаемые напряжения. Условия прочности при растяжении-сжатии. Три типа прочностных расчётов.	ОПК-2, ОПК-3
7	Чистый из- гиб. Попе- речный из- гиб	2	Внутренние силы при плоском изгибе. Построение эпюр поперечных сил и изгибающих моментов. Нормальные напряжения при чистом и поперечном изгибе в поперечном сечении. Моменты инерции плоских сечений прямоугольного, круглого и кольцевого. Моменты сопротивления сечений. Условие прочности балок по нормальным напряжениям.	ОПК-2, ОПК-3
8	Рациональные формы сечений. Стандартные профили. Сдвиг и кручение. Устойчивость сжатых стержней	2	Рациональные формы сечений при изгибе балок. Стандартные профили. Сдвиг и кручение. Закон Гука при сдвиге. Связь между тремя упругими постоянными: модулем упругости, модулем сдвига и коэффициентом Пуассона. Напряжения при кручении вала круглого сечения. Определение угла закручивания и условие жёсткости. Устойчивость сжатых стержней. Определение критических сил по формуле Эйлера при различных способах закрепления стержней.	ОПК-2, ОПК-3
9	Прочность при действии переменных нагрузок. Концентрация напряжений	2	Прочность при действии переменных напряжений. Кривая Вёлера. Влияние концентрации напряжений, размеров детали, состояния поверхности на предел прочности. Коэффициент запаса усталостной прочности.	ОПК-2, ОПК-3

6. Содержание практических занятий

No	Тема практиче-	ча-	Краткое содержание	Компе-
Π/Π	ских[занятий	сы		тенции
1	2	3	4	5
1	Кинематика точ- ки. Вращательное и движение твер- дого тела.	2	Определение скорости и ускорения при различных способах задания движения точки. Определение скорости и ускорения точек вращающегося тела.	ОПК-2, ОПК-3
2	Система сходящихся и параллельных сил.	2	Определение реакций связей при действии на тело сходящихся и параллельных сил.	ОПК-2, ОПК-3
3	Система произвольных сил. Центр тяжести тел.	2	Определение реакций связей при действии на тело произвольных сил. Центр тяжести линии, площади и объёма.	ОПК-2, ОПК-3
4	Первая задача динамики. Принцип Даламбера.	2	Определение действующей на точку силы по заданному движению.	ОПК-2, ОПК-3
5	Вторая задачи динамики.	2	Интегрирование дифференциального уравнения прямолинейного движения точки в случае постоянной силы.	ОПК-2, ОПК-3
6	Растяжение и сжатие стержней.	2	Диаграммы растяжения и сжатия образца из пластичного и хрупкого материала. Определение модуля упругости и коэффициента Пуассона. Расчёт на прочность стержней.	ОПК-2, ОПК-3
7	Чистый и поперечный изгиб.	2	Расчёт на прочность при чистом и поперечном изгибе балки.	ОПК-2, ОПК-3
8	Сдвиг и кручение.	2	Напряжения при кручении вала круглого сечения. Определение угла закручивания и условие жёсткости.	ОПК-2, ОПК-3
9	Устойчивость сжатых стержней.	2	Устойчивость сжатых стержней. Определение критических сил по формуле Эйлера при различных способах закрепления стержней.	ОПК-2, ОПК-3

7. Содержание лабораторных занятий

Проведение лабораторных занятий не предусмотрено.

8. Самостоятельная работа студента

№ п/п	Задания и темы, выносимые на самостоятельную работу	Время на подготовку, час	Форма СРС	Ком- петен- ции
1	Тема 1. Расчётная работа «Определение траектории, скорости и ускорения точки при координатном способе задания движения»	18		ОПК-2, ОПК-3
2	Тема 7. Расчётная работа «Расчёт на прочность балки при поперечном изгибе»	18		ОПК-2, ОПК-3

9. Использование рейтинговой системы оценки знаний.

При оценке результатов деятельности студентов в рамках дисциплины <u>«Теоретическая механика, в том числе сопромат»</u> используется рейтинговая система. Рей-

тинговая оценка формируется на основании текущего и промежуточного контроля в соответствии с Положением о рейтинговой системе «КНИТУ».

По дисциплине <u>«Теоретическая механика, в том числе сопромат»</u> предварительным видом контроля является экзамен.

Количество баллов текущего рейтинга по дисциплине определяется преподавателем при выполнении всех контрольных точек и заданий.

Вид работ	Коли- чество работ	Макси- мальный балл	Минимальная сумма баллов	Максимальная сумма баллов
Расчетно-графические работы	2	20	26	40
Тестирование	1	20	10	20
Экзамен			24	40
Итого			60	100

10. Оценочные средства для текущего контроля успеваемости, промежу-точной аттестации по итогам освоения дисциплины

Оценочные средства для проведения текущего контроля успеваемости, промежуточной аттестации обучающихся разрабатываются согласно положению о Фондах оценочных средств, рассматриваются как составная часть рабочей программы и оформляются отдельным документом.

11. Учебно-методическое и информационное обеспечение дисциплины

11.1 Основная литература

При изучении дисциплины «Сопротивление материалов» в качестве основных источников информации рекомендуется использовать следующую литературу:

Сопротивление материалов [Электронный ресурс] /	ЭБС «Консультант студента»
Межецкий Г. Д М. : Дашков и K, 2013.	http://www.studentlibrary.ru/book/IS
	BN9785394019722.html
	Доступ из любой точки интернета
	после регистрации по IP адресам
	КНИТУ
Сборник задач по сопротивлению материалов [Элек-	ЭБС «Лань».
тронный ресурс]: учеб. пособие / Н.М. Беляев [и др.].	https://e.lanbook.com/book/2022.
— Электрон. дан. — Санкт-Петербург: Лань, 2011.	Доступ из любой точки интернета
— 432 c.	после регистрации по IP адресам
	КНИТУ
Валиуллин, А. Х. Сопротивление материалов: учеб.	70 экз. в УНИЦ КНИТУ
пособие для студентов / Казанский нац. исслед. тех-	
нол. ун-т .— Казань, 2014 .— 389 с.	
Прикладная механика: учебник: 2-е изд., перераб. /	300 экз. в УНИЦ КНИТУ
М.Н. Серазутдинов, Н.П. Петухов, Э. Н. Островская,	
С.Г. Сидорин; - Казань: Центр инновационных тех-	
нологий, 2016. – 326 с.	
Степин П.А. Сопротивление материалов: учебник /	ЭБС «Лань».
Степин П.А. – 13-е изд., стер. – С-Пб.: Лань, 2014. –	http://e.lanbook.com/book/3179.
320 с. Степин, П.А. Сопротивление материалов	· · · · · · ·
[Электронный ресурс] : учеб. — Электрон. дан. —	после регистрации по IP адресам
Санкт-Петербург: Лань, 2014. — 320 с.	КНИТУ

11.2 Дополнительная литература

В качестве дополнительных источников информации рекомендуется использовать следующую литературу:

1.	Сопротивление материалов. Лабораторные работы на универсальном стенде: методические указания/ Казан. нац. исслед.	7882-XXX-Abdulhakov-SM.pdf Доступ с IP-адресов КНИТУ		
	технол. ун-т; сост.: К.А. Абдулхаков [и др.]. –Казань, 2009. – 37 с.			
2.	Прикладная механика. Контрольные	70 экз. в УНИЦ КНИТУ		
	задания: учебное пособие /Казан. нац.	ЭБ УНИЦ. Ссылка		
	исслед. технол. ун-т; сост.: сост.: Х.С.	http://ft.kstu.ru/ft/Gumerova-		
	Гумерова[и др.]. – Казань, 2014. – 143 с.	prikladnaya_mekhanika.pdf		
		Доступ с ІР-адресов КНИТУ		
3.	Валиуллин, А.Х.; Серазутдинов, М.Н.;	ЭБ УНИЦ. Ссылка		
	Сидорин, С.Г.; Хайруллин, Ф.С	http://ft.kstu.ru/ft/valiullin-soprotivlenie.pdf		
	Сопротивление материалов/ Валиуллин,	Доступ с ІР-адресов КНИТУ		
	А.Х.; Серазутдинов, М.Н.; Сидорин, С.Г.;			
	Хайруллин, Ф.С Казань: КНИТУ, 2012			
	64 c.			

11.3 Электронные источники информации

При изучении дисциплины рекомендовано использование электронных источников информации:

- 1. Электронный каталог УНИЦ КНИТУ http://ruslan.kstu.ru/
- 2. ЭБС «Руконт» http://rucont.ru/
- 3. ЭБС «Лань» http://e.lanbook.com/
- 4. ЭБС «КнигаФонд» http://www.knigafund.ru/
- 5. ЭБС «IPRbooks» http://www.iprbookshop.ru/
- 6. ЭБС «Консультант студента» http://www.studentlibrary.ru

Согласовано:

Зав. сектором ОКУФ

ФЕДЕРАЛЬНОЕ ГОСУЛИСТВЕННОЕ БЮДЖЕТНОЕ
ОБРАПОВЛЕДНОЕ УЧРЕЖНЯНИЕ ВЫСШЕГО
ОБРАЗОВИЯ
«КАЗАНСКИЯ ИЗ ОБРАНАЛИНИЯ ИССЛЕДОВАТЕЛЬСКИЙ
ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТЬ
УЧЕБЛО-Научный
информационный центр

12. Материально-техническое обеспечение дисциплины

- 1. Лекционные занятия аудитория на 50 60 мест.
- 2. Практические занятия аудитория на 25 30 мест. Использование макетов:
- механизма для демонстрации поступательного движения твердого тела;
- редукторов для демонстрации вращательного движения твердого тела;
- кривошипно-шатунных механизмов для демонстрации плоскопараллельного движения твердого тела.

13. Образовательные технологии

Весь лекционный курс обеспечен учебными пособиями, раздаточным материалом и комплектом слайдов. При проведении защит расчетно-графических работ организуются дискуссии между студентами. Занятия, проводимые в интерактивных формах, при изучении дисциплины Б1.Б.17.1 «Теоретическая механика, в том числе сопромат» составляют 8 час. аудиторных занятий.

Лист переутверждения рабочей программы

Рабочая программа по дисциплине Б1.Б.17.1 «Теоретическая механика, в том числе сопромат»

Направление подготовки: 19.03.01 «Биотехнология»

Профили подготовки: «Биотехнология»

Пересмотрена на заседании кафедры «Теоретическая механика и сопротивление материалов»

No	Дата	Наличие	Наличие	Подпись	Подпись	Подпись
п/п	переутверждения	изменений	изменений в	разработ-	заведующего	начальника
	РП (протокол		списке	чика РП	кафедрой	УМЦ
	заседания		литературы	Saidyn noeb M.H	CepasyFour	Kuraeba
	кафедры № _ от 20)			DOBB MH	M. H.	S.A.
1	протокол заседания кафедры № 1 от 31.08.2018	нет	нет	Office	Jay 7	Munes