АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

Б1.О.06.01 «Общая и неорганическая химия»

по направлению подготовки: 28.03.02 «Наноинженерия»

по профилю: Органические и неорганические наноматериалы

<u>Квалификация выпускника: БАКАЛАВР</u> Выпускающая кафедра: ПНТВМ

Кафедра-разработчик рабочей программы: «Неорганической химии»

1. Цели освоения дисциплины:

Целями освоения дисциплины «Общая и неорганическая химия» являются:

- а) формирование системы общехимических знаний;
- б) формирование представлений взаимосвязи химических свойств веществ и их строения;
- в) формирование представлений о химическом процессе;
- г) формирование представлений о направлении протекания химического процесса;
- д) формирование знаний химии, создающих основу успешного усвоения материаловедческих и специальных дисциплин;
- е) формирование общехимических знаний как основы успешной профессиональной деятельности.

2. Содержание дисциплины «Общая и неорганическая химия»»:

Строение атома. Периодический закон и периодические свойства химических элементов. Химическая связь. Основные закономерности протекания химических процессов (химическая термодинамика, химическая кинетика, катализ, химическое равновесие). Растворы. Свойства растворов. Растворы электролитов. Реакции без изменения степеней окисления элементов. Окислительно-восстановительные реакции. Простые вещества s- и р-элементов. Бинарные соединения s- и р-элементов. Оксосоединения s- и р-элементов. Общие свойства d-элементов. Координационные соединения. d-элементы VI и VII групп. d-элементы VIII группы (железо, кобальт, никель). Обзор d-элементов (d-элементы IV группы, платиновые металлы).

3. В результате освоения дисциплины обучающийся должен:

- 1) Знать:
- а) периодическую систему и строение атомов;
- б) теорию химической связи и результаты ее применения к описанию структуры и свойств веществ, типы химической связи (ковалентная, ионная, металлическая), теорию валентных связей, теорию гибридизации;
- в) строение вещества в конденсированном состоянии;
- г) основные закономерности протекания химических процессов: термодинамические характеристики веществ и химических процессов, условия возможности осуществления химических процессов, скорость химической реакции, катализ, условия химического равновесия, константа химического равновесия, взаимосвязь константы равновесия и энергии Гиббса; принцип подвижного равновесия (принцип Ле-Шателье) и влияние внешних факторов (температуры, давления, концентрации);
- д) растворы, способы выражения концентраций, идеальные и неидеальные растворы, свойства растворов;
- е) растворы электролитов, активность, протолитическое равновесие, равновесия в растворах, смещение ионных равновесий, гидролиз;
- ж) окислительно-восстановительные реакции;

- з) химию элементов по группам периодической системы; и) координационные соединения.
- 2) Уметь:
- а) воспроизводить основные факты, законы, теории химии, характеризующие вещество и химический процесс;
- б) записывать в математической форме законы химии и осуществлять расчеты по формулам и уравнениям химических реакций;
- в) на основании законов и теорий химии описывать и прогнозировать химические свойства веществ, обосновывать оптимальные условия протекания химических процессов.
- 3) Владеть:
- а) навыками экспериментальной работы в химической лаборатории;
- б) навыками анализа строения и свойств химических соединений;
- в) навыками ряда.

Зав.каф. ПНТВМ

mo

Вознесенский Э.Ф.