Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Казанский национальный исследовательский технологический университет» (ФГБОУ ВО «КНИТУ»)

УТВЕРЖДАЮ Проректор по УР

Бурмистров А.В.

2 » 2019 г.

РАБОЧАЯ ПРОГРАММА

По дисциплине «Квантово-химическое моделирование наноструктур»

Направление подготовки (специальности) 28.03.02 «Наноинженерия» Профиль Органические и неорганические наноматериалы Квалификация выпускника бакалавр Форма обучения очная Институт, факультет Институт нефти, химии и нанотехнологии, Факультет наноматериалов и нанотехнологий

Кафедра-разработчик рабочей программы <u>Кафедра неорганической химии</u> Курс, семестр <u>4 курс, 7 семестр</u>

	Часы	Зачетные единицы
Лекции	18	0.5
Практические занятия	18	0.5
Самостоятельная работа	72	2
Форма аттестации	экзамен 36	1
Beero	144	4

Рабочая программа составлена с учетом требований Федерального государственного образовательного стандарта высшего образования (№ 923 от 19.09.2017) по направлению 28.03.02 «Наноинженерия» на основании учебного плана набора обучающихся 2019 г.

Разработчик программы:

доцент (должность) (подпись)

<u>Борисевич С.В.</u> (Ф.И.О)

Рабочая программа рассмотрена и одобрена на заседании кафедры неорганической химии, протокол от $\underline{24.06.19}$, № $\underline{7}$

Зав. кафедрой

(подпись)

Кузнецов А.М.

(Ф.И.О.)

СОГЛАСОВАНО

Протокол заседания кафедры высокомолекулярных материалов от 2.07 + 2019 г. № 15

плазмохимических

нанотехнологий

Председатель комиссии, профессор

(подпись)

<u>Вознесенский Э.Ф.</u> (Ф.И.О.)

УТВЕРЖДЕНО

Нач. УМЦ, доцент

(подпись)

<u>Китаева Л.А.</u> (Ф.И.О.)

1. Цели освоения дисциплины

Целями освоения дисциплины «Квантово-химическое моделирование наноструктур» являются:

- а) ознакомление с основами квантово-механического описания химических свойств наносистем;
- б) изучение современных методов квантовой химии, их теоретических основ, возможностей и ограничений;
- в) знакомство со структурой и принципами работы современных пакетов квантово-химических программ;
- г) обучение способам подготовки исходных данных и анализа результатов квантово-химических расчетов.

2. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Квантово-химическое моделирование наноструктур» относится к части, формируемой участниками образовательных отношений, и формирует у бакалавров по направлению подготовки 28.03.02 «Наноинженерия» набор специальных знаний, умений, навыков и компетенций.

Для успешного освоения дисциплины «Квантово-химическое моделирование наноструктур» бакалавр по направлению подготовки 28.03.02 «Наноинженерия» должен владеть знаниями в областях:

- а) физики;
- б) высшей математики;
- в) общей и неорганической химии;
- г) органической химии;

Дисциплина «Квантово-химическое моделирование наноструктур» является одной из завершающих и необходима для успешного выполнения выпускной квалификационной работы по направлению подготовки 28.03.02 «Наноинженерия».

3. Компетенции и индикаторы достижения компетенций обучающегося, формируемые в результате освоения дисциплины

- ПК-12. Способен применять знания фундаментальных и естественнонаучных дисциплин при использовании новых методов и оборудования для модификации свойств наноматериалов и наноструктур
- ПК-12.1 Знает основные методы и разделы фундаментальных и естественнонаучных дисциплин в области модификации свойств наноматериалов и наноструктур; принципы воздействие используемого оборудования на наноматериалы и наноструктуры;
- ПК-12.2 Умеет применять знания фундаментальных и естественнонаучных дисциплин для обоснования использования новых методов и оборудования для модификации свойств наноматериалов и наноструктур;

ПК-12.3 Владеет современными методами, специализированными программами и оборудованием для модификации свойств наноматериалов и наноструктур.

В результате освоения дисциплины обучающийся должен:

1) Знать:

- а) основные приближения, используемые при решении квантовохимических задач;
- б) возможности современных вычислительных методов квантовой химии в исследовании физико-химических свойств и реакционной способности молекулярных систем;
- в) основные расчетные схемы полуэмпирических и неэмпирических методов квантовой химии, а также уровень их точности в расчетах свойств химических веществ.

2) Уметь:

- а) прогнозировать на основе квантово-химического моделирования различные физико-химические свойства исследуемых структур;
- б) выбирать метод квантовой химии, оптимальный для решения поставленной задачи;
- в) подготавливать исходные данные для выполнения квантово-химических расчетов;
- г) критически анализировать результаты квантово-химических расчетов.

3) Владеть:

- а) терминологией дисциплины;
- б) современными пакетами квантово-химических программ;
- в) средствами подготовки исходных данных и анализа, в том числе графического, результатов квантово-химических расчетов.

4. Структура и содержание дисциплины «Квантово-химическое моделирование наноструктур».

Общая трудоемкость дисциплины составляет 4 зачетные единицы, 144 часа.

№ п/п	D		В	иды учебной рас (в часах)	боты	Оценочные средства для проведения промежуточной аттестации по разделам
	Раздел дисциплины	Семестр	Лек- ции	Практические занятия	CPC	
1	Теория электронного строения атомов	7	9	6	24	контрольная работа 1
2	Теория электронного строения молекул	7	3	4	16	контрольная работа 2
3	Методы квантовой химии.	7	3	4	16	контрольная работа 2
4	Моделирование химических реакций	7	3	4	16	контрольная работа 2
Фор	ма аттестации	Форма аттестации				

5. Содержание лекционных занятий по темам с указанием формируемых компетенций.

№	Раздел	Часы	Тема лекционного	Краткое содержание	Индикаторы
п/п	дисциплины		занятия		достижения
					компетенций
1	Теория электронного строения атомов.	3	Решение уравнения Шредингера для атома водорода и водородоподобных атомов.	Построение оператора Гамильтона, описывающего атом водорода и водородоподобные атомы. Переход в сферическую систему координат. Разделение переменных.	ПК-12.1, ПК-12.2, ПК-12.3
				Радиальная и угловая частти волновой функции.	
		3	Анализ свойств атомных орбиталей водородоподобного атома.	Классификация атомных орбиталей, их энергия и пространственая структура. Свойства водородоподобного атома	ПК-12.1, ПК-12.2, ПК-12.3
		3	Многоэлектронные атомы.	Гамильтониан многоэлектронного атома. Вариационный принцип. Проблема выбора пробной функции. Вариационный метод Ритца. Метод Хартри. Метод Хартри-Фока.	ПК-12.1, ПК-12.2, ПК-12.3
2	Теория электронного строения молекул	1	Основные приближения квантовой химии. Метод Хартри-Фока-Рутана.	Гамильтониан многоядерной многоэлектронной системы. Приближение Борна-Оппенгеймера. Метод молекулярных орбиталей. Приближение МО ЛКАО. Метод Хартри-Фока-Рутана.	ПК-12.1, ПК-12.2, ПК-12.3
		2	Аналитические аппроксимации атомных орбиталей и атомные базисные наборы. Атомные псевдопотенциалы.	Описание орбиталей многоэлектронного атома. Орбитали Слетэра-Зенера. Дубль-зета-функции. Орбитали гауссова типа. Контракция орбиталей. Минимальные, валентнорасщепленные, диффузные и поляризационные базисные наборы. Атомные псевдопотенциалы.	ПК-12.1, ПК-12.2, ПК-12.3
3	Методы квантовой химии.	2	Энергия корреляции. Методы ab initio. Методы функционала	Понятие энергии корреляции, ее составляющие. Ограничения однодетерминантного подхода. Метод	ПК-12.1, ПК-12.2, ПК-12.3

			плотности.	конфигурационного	
				взаимодействия.	
				Классификация методов КВ.	
				Теория возмущений. Теория	
				функционала плотности.	
				Разновидности методов	
				ТФП.	
		1	Современные	Понятие о	ПК-12.1,
			полуэмпирические	полуэмпирических методах	ПК-12.2,
			методы и области	квантовой химии. Основные	ПК-12.3
			их применения	приближения	
				полуэмпирических методов.	
				Современные	
				полуэмпирические методы и	
				области их применения	
4	Моделирование	1	Поверхность	Определение поверхности	ПК-12.1,
	химических		потенциальной	потенциальной энергии.	ПК-12.2,
	реакций		энергии и	ППЭ двухатомной и	ПК-12.3
			химическая	многоатомной системы.	
			реакция.	Стационарные точки.	
				Матрица Гесса. ППЭ и	
				химическая реакция.	
		2	Учет сольватации в	Учет сольватации в	ПК-12.1,
			квантово-	квантово-химических	ПК-12.2,
			химических	расчетах. Классификация	ПК-12.3
			расчетах	моделей. Сольватонная	
				модель. Модель	
				самосогласованного поля	
				реакции. Приближение	
				супермолекулы. Метод	
				атом-атомных потенциалов	

6. Содержание практических/семинарских занятий

Цель проведения практических занятий — освоение лекционного материала и решение комплексных учебно-познавательных задач, требующих от студента применения как научно-теоретических знаний, так и навыков проведения квантово-химических расчетов.

№ п/п	Раздел дисциплины	Часы	Тема практического занятия	Индикаторы достижения
11/11	дисциплины			компетенций
1	Теория электронного строения атомов.	2	Собственные функции и собственные значения эрмитовых операторов	ПК-12.1, ПК-12.2, ПК-12.3
		2	Волновая функция и ее свойства	ПК-12.1, ПК-12.2, ПК-12.3

		2	Операторы физических величин и расчет средних значений	ПК-12.1, ПК-12.2, ПК-12.3
2	Теория электронного строения молекул	2	Подготовка файла исходных данных программного пакета Gaussian. Использование программы Molden.	ПК-12.1, ПК-12.2, ПК-12.3
		2	Влияние базисного набора на точность квантово-химических расчетов. Применение атомных псевдопотенциалов.	ПК-12.1, ПК-12.2, ПК-12.3
3	Методы квантовой химии.	2	Методы учета электронной корреляции.	ПК-12.1, ПК-12.2, ПК-12.3
		2	Сопоставление результатов полуэмпирических и ab initio методов	ПК-12.1, ПК-12.2, ПК-12.3
4	Моделирование химических реакций	2	Квантово-химический расчет термодинамических и кинетических параметров химической реакции	ПК-12.1, ПК-12.2, ПК-12.3
		2	Учет влияния растворителя в программном пакете Gaussian.	ПК-12.1, ПК-12.2, ПК-12.3

7. Содержание лабораторных занятий

Учебным планом не предусмотрены.

8. Самостоятельная работа бакалавра/магистранта

№ п/п	Темы, выносимые на самостоятельную работу	Часы	Форма СРС	Индикаторы достижения компетенций
1	Математические операторы и их свойства	8	работа с лекционным материалом, поиск и анализ литературы и электронных источников информации по заданной проблеме, решение задач, изучение теоретического материала к практическим занятиям, подготовка к контрольной работе	ПК-12.1, ПК-12.2, ПК-12.3
2	Орбитали водородоподобного атома	8	работа с лекционным материалом, поиск и анализ литературы и электронных источников информации по заданной проблеме, решение задач, изучение теоретического материала к практическим занятиям, подготовка к контрольной работе	ПК-12.1, ПК-12.2, ПК-12.3
3	Операторы физических величин и расчет средних значений	8	работа с лекционным материалом, поиск и анализ литературы и электронных источников информации по заданной проблеме, решение задач, изучение теоретического материала к практическим занятиям, подготовка к	ПК-12.1, ПК-12.2, ПК-12.3

			контрольной работе	
4	Способы описания пространственной конфигурации молекул и ионов	8	поиск и анализ литературы и электронных источников информации по заданной проблеме, изучение теоретического материала к практическим занятиям	ПК-12.1, ПК-12.2, ПК-12.3
5	Важнейшие типы базисных наборов, используемых в квантовой химии	8	работа с лекционным материалом, поиск и анализ литературы и электронных источников информации по заданной проблеме, изучение теоретического материала к практическим занятиям	ПК-12.1, ПК-12.2, ПК-12.3
6	Использование методов конфигурационного взаимодействия для учета электронной корреляции	8	работа с лекционным материалом, поиск и анализ литературы и электронных источников информации по заданной проблеме, изучение теоретического материала к практическим занятиям	ПК-12.1, ПК-12.2, ПК-12.3
7	Достоинства и недостатки современных полуэмпирических методов, области их применения	8	работа с лекционным материалом, поиск и анализ литературы и электронных источников информации по заданной проблеме, изучение теоретического материала к практическим занятиям	ПК-12.1, ПК-12.2, ПК-12.3
8	Важнейшие термодинамические и кинетические параметры химической реакции	8	работа с лекционным материалом, поиск и анализ литературы и электронных источников информации по заданной проблеме, изучение теоретического материала к практическим занятиям	ПК-12.1, ПК-12.2, ПК-12.3
9	Взаимодействие между растворенным веществом и растворителем. Роль растворителей в химических процессах	8	работа с лекционным материалом, поиск и анализ литературы и электронных источников информации по заданной проблеме, изучение теоретического материала к практическим занятиям	ПК-12.1, ПК-12.2, ПК-12.3

9. Использование рейтинговой системы оценки знаний.

При оценке результатов деятельности студентов в рамках дисциплины «Квантово-химическое моделирование наноструктур» используется рейтинговая система. Рейтинговая оценка формируется на основании текущего и промежуточного контроля. Максимальное и минимальное количество баллов по различным видам учебной работы описано в «Положении о балльно-

рейтинговой системе оценки знаний студентов и обеспечения качества учебного процесса» ФГБОУ ВО КНИТУ.

При изучении дисциплины предусматривается экзамен и выполнение двух контрольных работ. За эти контрольные точки студент может получить минимальное и максимальное количество баллов (см. таблицу). За экзамен студент может получить минимум 24 балла и максимум — 40 баллов.

Таблица 1

№ π/π	Оценочные средства	Количество	Міп, баллов	Мах, баллов
1	Контрольная работа 1	1	16	28
2	Контрольная работа 2	1	20	32
3	Экзамен	1	24	40
	Итого:		60	100

10 Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

Оценочные средства для проведения текущего контроля успеваемости, промежуточной аттестации обучающихся и итоговой (государственной итоговой) аттестации разрабатываются согласно положению о Фондах оценочных средств, рассматриваются как составная часть рабочей программы и оформляются отдельным документом.

11. Информационно-методическое обеспечение дисциплины

11.1. Основная литература

При изучении дисциплины «Квантово-химическое моделирование наноструктур» в качестве основных источников информации рекомендуется использовать следующую литературу.

№	Основные источники информации	Кол-во экз.
	Цирельсон, В.Г. Квантовая химия.	100 экз. в УНИЦ КНИТУ
1	Молекулы, молекулярные системы и	
	твердые тела [Учебники]: учеб.	
	пособие для студ. вузов, обуч. по	
	химико-технол. напр. и спец. — М.:	
	БИНОМ. Лаборатория знаний, 2010	
	.—496 c.	

11.2. Дополнительная литература

No	Дополнительные источники информации	Кол-во экз.
1	Гельман, Г. Квантовая химия / с предисл. И коммент. А.Л. Чугреева.— 2-е изд., доп. — М.: БИНОМ. Лаборатория знаний, 2011.— 533 с	4 экз. в УНИЦ КНИТУ
2	Бейдер, Р. Атомы в молекулах : Квантовая теория / Пер.с англ.Е.С.Апостоловой, М.Ф.Боброва, К.Ю.Супоницкого и др.; Под ред.М.Ю.Антипина, В.Г. Цирельсона .— М. : Мир, 2001 .— 532 с.	
3	Назмутдинов, Р.Р. Практические занятия по квантовой химии /Р.Р. Назмутдинов, С.В. Борисевич.— Казань: Изд-во КНИТУ, 2000.— 47 с.	23 экз. в УНИЦ КНИТУ
4	Маслий А.Н. Компьютерная технология квантово-химических расчетов с помощью программного пакета «Gaussian»: метод. пособие/ А.Н.Маслий, Е.М.Зуева, С.В.Борисевич, А.М.Кузнецов, М.С.Шапник .— Казань: Изд-во КНИТУ, 2003 .— 86 с.	21 экз. в УНИЦ КНИТУ
5	Маслий, А.Н. Руководство по использованию компьютерной программы MOLDEN для визуализации результатов квантовохимических расчетов: метод. пособие / А.Н. Маслий, А.М. Кузнецов, М.С. Шапник .— Казань: Изд-во КНИТУ, 2009 .— 40 с.	11 экз. в УНИЦ КНИТУ

6 Гришаева, Т.Н. Использование программного пакета ChemCraft для моделирования и визуализации структуры и свойств молекулярных систем: метод. указ. / Т.Н. Гришаева, А.Н. Маслий, А.М. Кузнецов.— Казань: Изд-во КНИТУ, 2016.— 56 с.

10 экз. в УНИЦ КНИТУ

11.3 Электронные источники информации

При изучении дисциплины «Квантово-химическое моделирование наноструктур» предусмотрено использование электронных источников информации:

– ЭБС «Книга Фонд»: www.knigafund.ru

– ЭБС «Лань» Журналы: http://www.e.lanbook.com;

– Научная Электронная Библиотека (НЭБ). Российские журналы в свободном доступе: https://elibrary.ru/projects/subscription/rus_titles_free.asp

– Электронный каталог КНИТУ: http://ruslan.kstu.ru

–Журнал «Вестник Казанского технологического университета»: http://elibrary.ru/contents.asp?titleid=8488

Согласовано:

Зав. сектором ОКУФ

ФЕДЕРАЛЬНОЕ ГОБУДАРСТВИНОЕ БЮДЖИНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРКЛЕНИЕ ВЫСМЕГО

ФЕДЕРАЛЬНОЕ УЧЕРКЛЕНИЕ ВЫСМЕГО

ФЕДЕРАЛЬНОЕ УЧЕРКЛЕНИЕ ВЫСМЕГО

ФЕДЕРАЛЬНОЕ УЧЕРКЛЕНИЕ ВЫСМЕГО

ФЕДЕРАЛЬНОЕ ГОБУДАРСТВИНОЕ БЮДЖИНОЕ

«КАЗАНСКИЙ НАЦИОПАЛЬНЫЙ ИССТЕДИВАТЕЛЬСКИВ

ТЕХНОЛОГИИХ КИЙ УНИВЕРСИТЕТЬ

У ЧЕОКО—НАУЧНЫЙ ЦЕНТР

11.4. Современные профессиональные базы данных и информационные справочные системы.

1. Журналы http://www.abc.chemistry.bsu.by/free-journals/j.html

2. Научная электронная библиотека. Режим доступа: https://elibrary.ru/, свободный.

12. Материально-техническое обеспечение дисциплины (модуля).

1. Лекционные занятия:

- а) комплект электронных презентаций/слайдов,
- б) аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук).

2. Практические занятия:

Дисплейные классы (Д-217, 222а) для проведения контроля работы студентов и самостоятельной работы оснащены 20 компьютерами AMD PhenomIIx4 955/4Gb/500Gb/Benq 19.5 с возможностью подключения к сети «Интернет», которые обеспечены доступом в электронную информационную среду КНИТУ.

Лицензированное программное обеспечение и свободно распространяемое программное обеспечение, используемое в учебном процессе при освоении дисциплины «Квантово-химическое моделирование наноструктур»:

- 1 Операционная система OpenSUSE
- 2 Браузер Firefox для доступа в ИКС КНИТУ MOODLE и к образовательным ресурсам в сети интернет.
- 3 Офисный пакет LibreOffice

13. Образовательные технологии

Занятия, проводимые в интерактивной форме, составляют 18 часов.

При изучении дисциплины «Квантово-химическое моделирование наноструктур» предусмотрено применение различных образовательных технологий.

Информационные технологии: доступ через глобальную сеть Интернет к электронным библиотечным ресурсам;

Традиционные технологии: индивидуальная работа, подготовка к контрольной работе, составление конспекта лекций;

Интерактивные технологии: работа у доски, работа в малых группах; дискуссия, командная работа под руководством преподавателя, решение проблемных ситуаций, изучение и закрепление нового материала на интерактивной лекции (лекция-беседа, лекция – дискуссия).