Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Казанский национальный исследовательский технологический университет» (ФГБОУ ВО КНИТУ)

УТВЕРЖДАЮ

Проректор по УР Бурмистров А.В.

(подпись)

2019 г.

ПРОГРАММА РАБОЧАЯ

По дисциплине Композиционные наноматериалы

Направление подготовки

28.03.02 Наноинженерия

(наименование)

Профиль подготовки

Органические и неорганические наноматериалы

Квалификация (степень) выпускника

БАКАЛАВР

Форма обучения

РЕНЬЮ

Институт, факультет

Институт нефти, химии и нанотехнологий,

факультет наноматериалов и нанотехнологий

Кафедра-разработчик рабочей программы Плазмохимических и нанотехнологий

высокомолекулярных материалов

Курс; семестр 4; 8

*	Часы	Зачетные единицы
Лекции	18	0,5
Практические занятия	-	-
Лабораторные занятия	36	1
Контроль самостоятельной работы		
Самостоятельная работа	54	1,5
Форма аттестации: зачет	-	-
Bcero	108	3

Рабочая программа составлена с учетом требований Федерального государственного образовательного стандарта высшего образования (№ 923 от 19.09.2017) по направлению 28.03.02 «Наноинженерия» для профиля подготовки «Органические и неорганические наноматериалы», на основании учебного плана набора обучающихся 2019 г. Типовая программа по дисциплине отсутствует.

Разработчик программы:

Доцент каф. ПНТВМ

(должность)

(полись)

Ю.А. Тимошина

Рабочая программа рассмотрена и одобрена на заседании кафедры ПНТВМ, протокол № 15 от $02.07.2019 \, \Gamma$.

Зав. кафедрой ПНТВМ, профессор

100

Э.Ф. Вознесенский

УТВЕРЖДЕНО

Начальник УМЦ

Л.А. Китаева

1. Цели освоения дисциплины

Целями освоения дисциплины «Композиционные наноматериалы» являются формирование у обучающихся способностей составлять обзорные отчеты по перспективным направлениям развития и технологиям производства наноструктурированных композиционных материалов на основе проведенного анализа литературы; осуществлять выбор методов проведения испытаний наноструктурированных композиционных материалов на основе перечня их технологических и функциональных свойств

2. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Композиционные наноматериалы» относится к дисциплинам по выбору части, формируемой участниками образовательного процесса, и формирует у бакалавров по направлению подготовки 28.03.02 «Наноинженерия» по профилю подготовки «Органические и неорганические наноматериалы» набор знаний, умений, навыков и компетенций.

Для успешного освоения дисциплины «Композиционные наноматериалы» бакалавр по направлению подготовки 28.03.02 «Наноинженерия» должен освоить материал предшествующих дисциплин:

- а) Введение в наноинженерию
- б) Нанохимия
- в) Методы диагностики в нанотехнологии
- г) Техническое оснащение нанотехнологий

Знания, умения, навыки и компетенции, полученные при освоении дисциплины «Композиционные наноматериалы», могут быть использованы при прохождении преддипломной практики и выполнении выпускных квалификационных работ по направлению подготовки 28.03.02 «Наноинженерия».

3. Компетенции и индикаторы достижения компетенций обучающегося, формируемые в результате освоения дисциплины

- ПК-4 Способен составлять обзорные отчеты по перспективным направлениям развития и технологиям производства наноструктурированных композиционных материалов на основе проведенного анализа литературы
- ПК-4.1 Знает научные проблемы и перспективные направления развития отрасли наноструктурированных композиционных материалов, технический английский язык в области композиционных материалов и нанотехнологий
- ПК-4.2 Умеет применять информационно-коммуникационные технологии сбора технической информации по инновационным разработкам в отрасли производства наноструктурированных композиционных материалов
- ПК-4.3 Владеет навыками анализа передового опыта в области производства наноструктурированных композиционных материалов, новых технологий и перспектив развития отрасли
- ПК-5 Способен осуществлять выбор методов проведения испытаний наноструктурированных композиционных материалов на основе перечня их технологических и функциональных свойств
- ПК-5.1 Знает методы получения наноструктурированных композиционных материалов, их физико-химические характеристики; современные методы и оборудование для проведения испытаний эксплуатационных и функциональных свойств наноструктурированных композиционных материалов
- ПК-5.2 Умеет выбирать методы и средства проведения исследований, применять современные технические средства для испытаний эксплуатационных и функциональных

свойств наноструктурированных композиционных материалов, систематизировать и обрабатывать полученные экспериментальные результаты

ПК-5.3 Владеет навыками составления перечня количественных и качественных характеристик свойств наноструктурированных композиционных материалов; проведения испытаний эксплуатационных и функциональных свойств наноструктурированных композиционных материалов

В результате освоения дисциплины обучающийся должен:

- 1) Знать:
- а) перспективные направления развития отрасли наноструктурированных композиционных материалов
- б) методы получения наноструктурированных композиционных материалов, их физико-химические характеристики; современные методы и оборудование для проведения испытаний эксплуатационных и функциональных свойств наноструктурированных композиционных материалов.
 - 2) Уметь:
- а) применять информационно-коммуникационные технологии сбора технической информации по инновационным разработкам в отрасли производства наноструктурированных композиционных материалов;
- б) выбирать методы и средства проведения исследований, применять современные технические средства для испытаний эксплуатационных и функциональных свойств наноструктурированных композиционных материалов, систематизировать и обрабатывать полученные экспериментальные результаты.
 - 3) Владеть:
- а) навыками анализа передового опыта в области производства наноструктурированных композиционных материалов, новых технологий и перспектив развития отрасли;
- б) навыками составления перечня количественных и качественных характеристик свойств наноструктурированных композиционных материалов; проведения испытаний эксплуа-тационных и функциональных свойств наноструктурированных композиционных материалов.

4. Структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 3 зачетные единицы, 108 часа.

№ п/п	Раздел дисци- плины	Семестр		Виды учебі (в ча	Оценочные средства для проведения промежуточной		
11, 11		Ce	Лекция	Лаборатор- ные работы	КСР	СРС	аттестации по разделам
1	Волокнистые армирующие материалы	8	6	9		10	Устный опрос Реферат, защита реферата
2	Нанонаполните- ли для компози- ционных мате- риалов	8	4	-		12	Устный опрос Реферат, защита реферата
3	Общие законо- мерности строе- ния композици-	8	4	27		16	Устный опрос Реферат, защита реферата

	онных нанома- териалов						
4	Тенденции развития производства композиционных наноматериалов	8	4	1		16	Устный опрос Реферат, защита реферата
			18	36		54	
	_				Форма а	ттестации	Зачет

5. Содержание лекционных занятий по темам с указанием формируемых

компетенций и используемых инновационных образовательных технологий.

№ п/п	Раздел дисци- плины	Ча сы	Тема лекционно- го занятия	Краткое содержание	Индикаторы достижения компетенций
1	Волокнистые армирующие материалы	6	Органические волокнистые армирующие материалы. Неорганические волокнистые армирующие материалы.	Содержание и задачи дисциплины. Предмет изучения дисциплины. ПА, ПП, ПЭ волокна. Базальтовые, асбестовые и стекловолокна: методы получения, свойства, применение в композиционных материалах	ПК-4.1, ПК- 4.2, ПК-4.3, ПК-5.1, ПК- 5.2, ПК-5.3
2	Нанонаполнители для композиционных материалов	4	Структурные особенности наноматериалов. Нановолокнистые материалы. Углеродные наноструктуры. Нанопорошки.	Структурные особенности наноматеиалов, перспективы их применения в нанокомпозитах. Наноструктура синтетических волокнистых материалов. Нановолокнистые материалы, нитевидные нанокристаллы. Углеродные наноструктуры: виды, свойства и перспективы применения в нанокомпозитах. Нанопорошки: особенности структуры и свойств, области применения.	ПК-4.1, ПК- 4.2, ПК-4.3, ПК-5.1, ПК- 5.2, ПК-5.3
3	Общие закономерности строения и виды композиционных наноматериалов	4	Общие закономерности и виды строения композиционных наноматериалов	Закономерности строения композиционных наноматериалов. Полимер-матричные нанокомпозиты. Гибридные и металлнеорганические нанокомпозиты. Нанокомпозиты, содержащие металлы и полупроводники. Углеродные нанокомпозиты.	ПК-4.1, ПК- 4.2, ПК-4.3, ПК-5.1, ПК- 5.2, ПК-5.3
4	Тенденции развития производства композиционных наноматериалов	4	Тенденции развития производства композиционных наноматериалов	Основные направления развития производства композиционных наноматериалов. Перспективы использования нанокомпозитов в различных областях промышленности и жизни.	ПК-4.1, ПК- 4.2, ПК-4.3, ПК-5.1, ПК- 5.2, ПК-5.3

	Значение развития производ-	
	ства нанокомпозитов в сфере	
	науки, экономики, националь-	
	ной безопасности, экологии.	
	Ключевые проблемы производ-	
	ства нанокомпозитов.	

6. Содержание практических занятий

Учебным планом по программе бакалавров 28.03.02 «Наноинженерия» проведение практических занятий по дисциплине «Композиционные наноматериалы» не предусмотрено.

7. Содержание лабораторных занятий

Целью проведения лабораторных занятий по дисциплине «Композиционные наноматериалы» приобретение знаний в области структуры наноструктурных волокнистых материалов, композиционных наноматериалов; формирование навыков работы на исследовательском оборудовании; оформления результатов испытаний в соответствии с нормативными документами.

№ п/п	Раздел дисциплины	Часы	Наименование лабора- торной работы	Индикаторы достижения компетенций
1	Волокнистые армирующие материалы	9	Физико-механические свойства волокнистых материалов	ПК-4.1, ПК-4.2, ПК- 4.3, ПК-5.1, ПК-5.2, ПК-5.3
2	Общие закономерности строения композиционных наноматериалов	9	Изучение адгезионной способности волокни- стых материалов	ПК-4.1, ПК-4.2, ПК- 4.3, ПК-5.1, ПК-5.2, ПК-5.3
3	Общие закономерности строения композиционных наноматериалов	9	Изготовление волокни- стых композиционных материалов методом по- слойного формования	ПК-4.1, ПК-4.2, ПК- 4.3, ПК-5.1, ПК-5.2, ПК-5.3
4	Общие закономерности строения композиционных наноматериалов	9	Испытание плоских образцов композиционных материалов на растяжение	ПК-4.1, ПК-4.2, ПК- 4.3, ПК-5.1, ПК-5.2, ПК-5.3

8. Самостоятельная работа бакалавра

Задания и темы, выносимые на самостоятельную работу бакалавра, а также трудоем-

кость в часах, форма СРС и контроля указаны в таблице.

№ п/п	Темы, выносимые на само- стоятельную работу	Часы	Форма СРС	Индикаторы достижения компетенций
1	Волокнистые армирующие материалы	10	Подготовка реферата, защита реферата	ПК-4.1, ПК-4.2, ПК-4.3, ПК-5.1, ПК-5.2, ПК-5.3
2	Нанонаполнители для компо-	12	Подготовка реферата,	ПК-4.1, ПК-4.2, ПК-4.3,

	зиционных материалов		защита реферата	ПК-5.1, ПК-5.2, ПК-5.3
3	Общие закономерности стро-	16	Подготовка реферата,	ПК-4.1, ПК-4.2, ПК-4.3,
	ения композиционных нано-		защита реферата	ПК-5.1, ПК-5.2, ПК-5.3
	материалов			
4	Тенденции развития произ-	16	Подготовка реферата,	ПК-4.1, ПК-4.2, ПК-4.3,
	водства композиционных		защита реферата	ПК-5.1, ПК-5.2, ПК-5.3
	наноматериалов			

8.1 Контроль самостоятельной работы

№ п/п	Темы, выносимые на самостоятель- ную работу	Часы	Форма КРС	Индикаторы достижения компетенций

9. Использование рейтинговой системы оценки знаний

При оценке результатов деятельности студентов в рамках дисциплины «Композиционные наноматериалы» используется рейтинговая система. Рейтинговая оценка формируется на основании текущего и промежуточного контроля. Максимальное и минимальное количество баллов по различным видам учебной работы описано в положении о рейтинговой системе КНИТУ.

Преподавание дисциплины осуществляется при очной форме обучения в 8 семестре и заканчивается зачетом.

Итоговый рейтинг студента по дисциплине складывается по результатам, полученным в молулях. Интервалы баллов по молулям представлены в таблице.

Оценочные средства	Кол-во	Min, баллов	Мах, баллов
1 Лабораторные занятия	4	20	40
а) теоретическая подготовка к занятиям		10	20
б) практическое выполнение лабораторной работы		10	20
2 Реферат	4	20	30
а) полнота раскрытия темы		8	12
б) правильность оформления		4	6
в) защита реферата		8	12
4 Лекции (оценивается активность на занятиях, посещаемость, результаты устных опросов)	9	20	30
а) активность на лекции и посещение		6	10
б) результат устных опросов		14	20
Итого:		60	100

Пересчет рейтинга в шкалу оценки: $0 \le R < 60$ - не зачтено, $60 \le R \le 100$ — зачтено.

10. Оценочные средства для определения результатов освоения дисциплины

Оценочные средства для проведения текущего контроля успеваемости, промежуточной аттестации обучающихся и итоговой аттестации разрабатываются согласно положению о Фондах оценочных средств, рассматриваются как составная часть рабочей программы и оформляются отдельным документом.

11. Информационно-методическое обеспечение дисциплины

11.1 Основная литература

При изучении дисциплины «Композиционные наноматериалы» в качестве основных источников информации рекомендуется использовать следующую литературу:

Основные источники информации	Кол-во экз.
1. Процессы и оборудование производства волокнистых и пленочных материалов : учебное пособие / И. Н. Жмыхов, Л. С. Гальбрайх, А. В. Акулич [и др.]. — Минск : Вышэйшая школа, 2013. — 591 с.	ЭБС «Iprbooks» http://www.iprbookshop.ru/35 531.html доступ из любой точки интернета после реги- страции с IP-адресов КНИТУ
2. Богатеев Г.Г. Основные характеристики волокнистых, нитевидных и тканых наполнителей композиционных материалов / Г.Г. Богатеев, К.В. Микрюков, Д.Г. Богатеев, В.Х. Абдуллина — Казань: КГТУ, 2010. — 131 с.	60 экз. В УНИЦ КНИТУ http://ft.kstu.ru/ft/978-5-7882- 0881-7-Bogateev- OHVNITNKM.pdf доступ с IP-адресов КНИТУ
3. Елисеев А.А. Функциональные наноматериалы / А.А. Елисеев, А.В. Лукашин, под ред. Ю.Д. Третьякова — М.: ФИЗМАТЛИТ, 2010 г 453 с.	ЭБС «Консультант студента» http://www.studentlibrary.ru/b ook/ISBN9785922111201.html доступ из любой точки интернета после регистрации с IP-адресов КНИТУ
4. Нанотехнологии и специальные материалы : учебное пособие для вузов / Ю. П. Солнцев, Е. И. Пряхин, С. А. Вологжанина, А. П. Петкова ; под редакцией Ю. П. Солнцев. — Санкт-Петербург : ХИМИЗДАТ, 2017. — 336 с.	ЭБС «Iprbooks»» http://www.iprbookshop.ru/67 351.html доступ из любой точки интернета после реги- страции с IP-адресов КНИТУ

11.2 Дополнительная литература

В качестве дополнительных источников информации рекомендуется использовать следующую литературу:

Дополнительные источники информации	Кол-во экз.
5. Старостин В.В. Материалы и методы нанотехнологии: учеб. пособие/ В.В. Старостин. – М.: БИНОМ. Лаборатория знаний, 2008. – 431 с.	30 экз. В УНИЦ КНИТУ
6. Пул-мл. Ч. Нанотехнологии: учеб. пособие для студ., обуч. По напр.подготовки «Нанотехнологии» / Ч. Пул-мл., Ф. Оуэнс. – М.: Техносфера, 2006. – 334 с.	10 экз. В УНИЦ КНИТУ
7. Фахльман, Бредли Д. Химия новых материалов и нанотехнологии: учеб. пособие / Фахльман, Бредли Д Долгопрудный: Интеллект, 2011. – 464 с.	72 экз. В УНИЦ КНИТУ

11.3 Электронные источники информации

При изучении дисциплины «Композиционные наноматериалы» используются электронные источники информации:

Научная электронная библиотека	http://elibrary.ru
ЭБС «Лань»	http://e.lanbook.com
ЭБС «Знаниум»	http://znanium.com
Сайт нанотехнологического общества России	http://www.ntsr.info/
Сайт о нанотехнологиях №1 в России	http://www.nanonewsnet.ru/
Российский электронный наножурнал	http://www.nanorf.ru/
Электронная библиотека КНИТУ	http://ruslan.kstu.ru

Согласовано:

Зав. сектором ОКУФ

федеральное государственное бюджетное образовательное учреждение высшего образовательное зиразования высшельский назанский научноний высшельский технологу вежих учиний и протрамующий протрамующ

11.4. Современные профессиональные базы данных и информационные справочные системы

- 1. Электронный фонд правовой и нормативно-технической документации доступ свободный http://docs.cntd.ru/
 - 2. Caйт Science Direct https://www.sciencedirect.com

12. Материально-техническое обеспечение дисциплины (модуля)

Учебные аудитории для проведения занятий по дисциплине «Композиционные наноматериалы» оснащены оборудованием: универсальная разрывная испытательная машина, сушильный шкаф, конфокальный лазерный сканирующий микроскоп.

Технические средства обучения: проектор, экран, ноутбук, принтер, Wi-Fi роутер с возможностью подключения к сети «Интернет» и обеспечены доступом в электронную информационную среду КНИТУ.

Лицензированное программное обеспечение и свободно распространяемое программное обеспечение, используемое в учебном процессе при освоении дисциплины: Справочная система нормативно-технической информации «Техэксперт» (Договор с Пользователем ИСС №165-Д-6831/17 от 28.12.2017), Справочная правовая система «Консультант Плюс» (Договор №17/2028/Б от 28.04.2017), Автоматизированная библиотечно-информационная система (АБИС) «Руслан» (Договор №01-12/2017 от 18.12.2017), Офисные и деловые программы ABBYY FineReader 9.0 проф от 19.11.2008 № AF90-3S1V01-102, MS Office 2007 Professional Russian от 16.10.2008 лицензия № 44684779

13. Образовательные технологии

В ходе изучения дисциплины «Композиционные наноматериалы» используются следующие образовательные технологии:

- ✓ Модульно рейтинговая технология с укрупнением блоков теоретического материала;
- ✓ Диалоговые технологии (устные опросы, опрос «вопрос-ответ»);
- ✓ Компьютерные технологии (Защита реферата с презентацией).

Учебным планом проведение занятий по дисциплине «Композиционные наноматериалы» с применением интерактивных технологий не предусмотрено.