Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Казанский национальный исследовательский технологический университет» (ФГБОУ ВО «КНИТУ»)

УТВЕРЖДАЮ

Проректор по УР А.В.Бурмистров

РАБОЧАЯ ПРОГРАММА

По дисциплине <u>Б.1.В.ДВ.10.1.</u> «Моделирование химико-технологических

процессов»

Направление подготовки 15.03.02 "Технологические машины и оборудование» (шифр) (наименование)

Профиль подготовки

«Технологическое оборудование химических и

нефтехимических производств»

Квалификация (степень) выпускника

БАКАЛАВР

Форма обучения

РЕМИРО

Институт, факультет

ИХТИ, Факультет экологической, технологической

и информационной безопасности

Кафедра-разработчик рабочей программы «Оборудование химических заводов» Курс 4 семестр 7

	Часы	Зачетные еди-	
		ницы	
Лекции	18	0,5	
Практические занятия	-	_	
Лабораторные занятия	18	0,5	
Самостоятельная работа	72	2,0	
Всего	108	3,0	
Контрольная работа		-	
Курсовой проект	Не предусмотрен	-	
Форма аттестации	Зачет 4 курс		
	(7 семестр)	_	

Рабочая программа составлена с учетом требований Федерального государственного образовательного стандарта высшего образования № 1170 (20 октября 2015 г) по направлению 15.03.02 "Технологические машины и оборудование», профиль подготовки «Технологическое оборудование химических и нефтехимических производств» на основании учебного плана набора обучающихся 2015 г., 2016 г., 2017 г обучения.

Типовая программа по дисциплине <u>«Моделирование химико-технологических процессов»</u> отсутствует.

Разработчик программы:
Профессор каф. ОХЗ, д.т.н (лодпись) Р.А. Халитов (ф.и.о)
Рабочая программа рассмотрена и одобрена на заседании <u>кафедры «Оборудовани</u>
химических заводов» протокол от « <u>23</u> » <u>10</u> 2017 г. № <u>6</u>
Зав. кафедрой ОХЗ, профессор (подпись) А. Ф. Махоткин (Ф.И.О.)
УТВЕРЖДЕНО
Рабочая программа рассмотрена и одобрена на заседании методического
комиссии ИХТИ, протокол от « <u>14</u> » <u>11</u> 2017 года № <u>36</u>
Председатель комиссии, профессор В.Я. Базотов
Начальник УМЦ, доцент

1. Цели освоения дисциплины

Целями освоения дисциплины <u>Б.1.В.ДВ.10.1</u> «Моделирование химико-технологических процессов» являются:

- а) способность применять математическое моделирование при анализе и оценке эффективности химико-технологических процессов;
- б) формирование способности выполнять расчеты химико-технологических процессов с использованием математических моделей и современных прикладных программ;
- в) объединение знаний физико-химической сущности процессов и методологии построения математических моделей, методов обработки экспериментальных данных при проведении научных исследований, с последующим анализом и обработкой данных с использованием современных информационных технологий;
- г) овладение знаниями в области моделирования химико-технологических процессов, составления и оптимизации математических моделей, использования современных математических программных пакетов в моделировании.

2. Место дисциплины в структуре ООП ВО

Дисциплина «Моделирование химико-технологических процессов» относится к к вариативной части дисциплин по выбору ООП и формирует у бакалавров по направлению подготовки 15.03.02 «Технологические машины и оборудование» общепрофессиональные и профессиональные компетенции, необходимые для выполнения научно-исследовательской и проектно-конструкторской деятельностей.

Для успешного освоения дисциплины «Моделирование химико-технологических процессов» бакалавр по направлению подготовки 15.03.02 ««Технологические машины и оборудование» должен освоить материал предшествующих дисциплин:

- а) Б1.Б.5 Математика;
- б) Б1.Б7 Химия;
- в) Б1.Б.9 Информационные технологии;
- г) Б1.Б.18 Механика жидкости и газа;
- д) Б1.В.ОД.5 Основы САПР;
- е) Б1.В. ДВ.5 Математическое моделирование;
- ж) Б1.Б.22 Термодинамика;
- з) Б1.В.ОД.8 Теплообмен;
- и) Б1.В.ОД.11 Процессы и аппараты химической технологии;

Дисциплина «Моделирование химико-технологических процессов» является предшествующей и необходима для успешного усвоения последующих дисциплин:

- а) Применение ЭВМ в инженерных расчетах (Б1.В.ДВ.4)
- б) Основы теории эксперимента (Б1.В.ДВ.4.1)

Знания, полученные при изучении дисциплины «Моделирование химикотехнологических процессов» могут быть использованы при прохождении производственной и преддипломной практик и выполнении выпускных квалификационных работ по направлению подготовки «Технологические машины и оборудование».

3. Компетенции обучающегося, формируемые в результате освоения дисциплины:

- 1) ОПК-2 владением достаточными для профессиональной деятельности навыками работы с персональным компьютером
- 2) ПК-2 умением моделировать технические объекты и технологические процессы с использованием стандартных пакетов и средств автоматизированного проектирования, готовностью проводить эксперименты по заданным методикам с обработкой и анализом результатов
- 3) ПК-5 способностью принимать участие в работах по расчету и проектированию деталей и узлов машиностроительных конструкций в соответствии с техническими заданиями и использованием стандартных средств автоматизации проектирования

В результате освоения дисциплины обучающийся должен:

Знать:

- а) системный метод анализа химико-технологических процессов;
- б) современные методы моделирования химико-технологических процессов;
- в) методы оптимизации химико-технологических процессов;
- г) методы дифференциального и интегрального исчислений, теорию дифференциальных уравнений для построения и анализа математических моделей химико-технологических процессов;
- д) методы статистического анализа;
- е) основы информационных технологий;
- ж) технические и программные средства.

Уметь:

- а) применять основные положения системного метода для анализа и математического описания химико-технологического процесса;
- б) правильно выбирать тот или иной метод моделирования в конкретных условиях;
- в) производить анализ модели с целью оптимизации параметров исследуемого процесса;
- г) применять методы моделирования для описания закономерностей химико-технологических процессов;
- д) строить и анализировать математические модели тепломассопереноса,
- е) использовать основные численные методы для решения инженерных задач;
- ж) осуществлять корректное математическое описание физических и химических явлений технологических процессов;
- з) описывать, рассчитывать и анализировать процессы переноса тепла и массы; выделять факторы, определяющие их интенсивность.

Владеть:

- а) методами анализа и численными методами, вычислительной техникой при решении прикладных задач в области профессиональной деятельности;
- б) методами работы в среде Windows, используя все ее приложения;
- в) основными физико-химическими расчетами химико-технологических процессов.

4. Структура и содержание дисциплины «Моделирование химико-технологических процессов»

Общая трудоемкость дисциплины составляет 3,0 зачетные единицы, 108 часов.

№ п/п	Раздел дисциплины	стр	В		бной работ часах)	Ы	Оценочные средства для проведения промежуточной аттестации по разделам)
		Семестр	Лек ции	Прак тиче- ские заня- тия	Лабора- торные работы	CPC	
1	Методы моделирования и области их применения.		2	-	-	16	Реферат Тест
2	Математическое описание процессов химического превращения и теплообменных процессов.	7	8	-	4	30	Реферат Тест Лабораторные работы
3	Математические модели структуры потоков в аппаратах. Моделирование массообменных процессов. Планирование эксперимента и оптимизация процессов.		8	-	14	26	Реферат Тест Лабораторные работы
			(Форма	аттестаци	И	Зачет

5. Содержание лекционных занятий по темам

Таблица 2 - Содержание лекционных занятий по темам

№ п/п	Раздел дис- циплины	Часы	Тема лекци- онного содержание занятия		Форми- руемые компетен- ции
1	2	3	4	5	6
	Методы моделирования и области их применения.	2	Тема 1. Научные основы и задача курса, взаимосвязь с другими дисциплинами.	Методологические основы построения математических моделей процессов химической технологии. Метод физического и математического моделирования Роль кибернетики в химической технологии. Сущность и цели математического моделирования объектов технологии. Два подхода к составлению математических моделей процесс: детерминированный и стохастический, сферы использования.	ОПК-2, ПК-2

	3.6		T 2 1/	TC U	
2	Математи- ческое опи- сание про- цессов хи- мического превраще- ния и тепло- обменных	8	Тема 2. Моделирование гомогенных химических реакций.	Краткие сведения из химической кинетики, скорость химической реакции, равновесие химических реакций, закон действующих масс. Стехиометрический анализ, механизмы реакций. Энергия активации. Порядок химических реакций. Кинетические модели гомогенных химических реакций.	ОПК-2, ПК-2
	процессов.		Тема 3. Моделирование гетерогенных химических реакций.	Методы построения кинетических моделей гетерогенных химических реакций: метод стационарных концентраций, метод адсорбционной изотермы Лэнгмюра.	ОПК-2, ПК-2, ПК-5
			Тема 4. Математическое моделирование теплообменных процессов.	Основы теплового расчета. Проектный расчет теплообменного аппарата. Математические модели теплообменников типа «смешение-смешение», типа «смешение-вытеснение», типа «вытеснение-вытеснение». Оптимальное проектирование теплообменного аппарата.	ПК-2, ПК-5
3	Математи- ческие мо- дели струк- туры пото- ков в аппа- ратах. Мо- делирование массообмен- ных процес- сов. Плани- рование экс- перимента и оптимизация процессов.	8	Тема 5. Математические модели структуры потоков в аппаратах.	Типовые математические модели структуры потоков в аппаратах. Модель идеального перемешивания. Модель идеального вытеснения. Модель с неполным продольным смешением — диффузионная однопараметрическая модель. Модель с неполным продольным и поперечным смешением — диффузионная двухпараметрическая модель. Ячеечная модель. Составление моделей реакторов с учетом продольного и радиального переноса массы и тепла. Моделирование неизотермических химических реакторов. Формирование системы уравнений материального и теплового балансов.	ПК-2, ПК-5
			Тема 6. Математическое моделирование массообменных процессов.	Уравнения равновесия. Уравнения кинетики. Уравнения теплового и материального балансов. Блочный принцип построения моделей массопередачи.	ПК-2, ПК-5
			Тема 7. Планирование эксперимента и оптимизация процессов.	Планирование и проведение эксперимента. Полный факторный эксперимент. Планирование второго порядка. Дробный факторный эксперимент. Методы оптимизации процессов. Критерий оптимальности, целевая функция и ресурсы оптимизации. Общая стратегия решения задачи оптимизации на ЭВМ. Методы оптимизации, классификация. Метод Бокса-Уилсона. Аналитические методы оптимизации.	ПК-2, ПК-5

6. Содержание практических занятий.

Учебным планом по направлению подготовки «Моделирование химикотехнологических процессов» не предусмотрено проведение практических занятий.

7. Содержание лабораторных занятий

Учебным планом по направлению подготовки 15.03.02 «<u>Технологические машины и оборудование</u>» предусмотрено проведение лабораторных занятий по дисциплине «Моделирование химико-технологических процессов» в объеме 18 часов. Содержание лабораторных занятий представлено в таблице 3.

Таблица 3 – Содержание лабораторных занятий

№ п\п	Раздел дисциплины	Часы	Название лабораторной рабо- ты	Формируе- мые компе- тенции
1	2	3	4	6
1.	Математическое описание процессов химического превращения и теплообменных процессов.	4	Тема 1. Моделирование гомо- генных химических реакторов.	ОПК-2, ПК-2, ПК-5
2.	2. Математические модели структуры потоков в аппаратах. Моделирование массообменных процессов. Планирование эксперимента и оп-		Тема 2. Исследование гидродинамики насадочного абсорбера. Статистические методы оптимизации.	ОПК-2, ПК-2, ПК-5
	тимизация процессов.	6	Тема 3. Исследование гидродинамики вихревого аппарата.	ОПК-2, ПК-2, ПК-5
		4	Тема 4. Математическое моделирование процесса фильтрации газового потока.	ОПК-2, ПК-2, ПК-5

8. Самостоятельная работа бакалавра

Таблица 4 – Самостоятельная работа бакалавров

№ п\п	Темы, выносимые на самостоятельную работу	Часы	Форма СРС*	Формируемые компетенции
1	Методы моделирования и области их применения.		Выполнение домашних заданий. Подготовка выступлений с рефератами.	ОПК-2, ПК-2, ПК-5
2	Математическое описание процессов химического превращения и теплообменных процессов.		Выполнение домашних заданий. Подготовка выступлений с рефератами. Подготовка к лабораторной работе и оформление отчёта.	ОПК-2, ПК-2, ПК-5
3	Математические модели структуры потоков в аппаратах. Моделирование массообменных процессов. Планирование эксперимента и оптимизация процессов		Выполнение домашних заданий. Подготовка выступлений с рефератами. Подготовка к лабораторной работе и оформление отчёта	ОПК-2, ПК-2, ПК-5

9. Использование рейтинговой системы оценки знаний.

При оценке результатов деятельности студентов в рамках дисциплины Б1.В.ДВ.10.1 «Моделирование химико-технологических процессов» используется рейтинговая система оценки знаний. Рейтинговая оценка формируется на основании текущего и промежуточного контроля. Максимальное и минимальное количество баллов по различным видам учебной работы описано в «Положении о балльнорейтинговой системе оценки знаний студентов и обеспечения качества учебного процесса».

Минимальное количество баллов за семестр составляет 60 баллов (при условии, что выполнены все контрольные точки), максимальное значение – 100 баллов.

По дисциплине «Моделирование химико-технологических процессов» запланировано 4 лабораторных занятия. Сдача лабораторной работы оценивается минимально в 10 балла, максимально в 15 баллов. В тестах представлено 5 групп заданий. В каждом варианте заданий 20 вопросов. Всего 100 вопросов. Максимальное количество баллов по тестированию составляет — 25 баллов. Минимальное количество — 12 баллов. Сдача реферата оценивается минимально 8 баллов, максимально 15 баллов.

Итого:

Оценка знаний		Баллы
	Минимально	Максимально
Лабораторные занятия	4 x 10=40	4 x 15= 60
Тестирование	1 x 12 =12	$1 \times 25 = 25$
Реферат	8	15
ИТОГО	60	100

Возможна дополнительная сдача (пересдача) контрольных точек в дополнительные сроки, согласованные с деканатом.

Перевод баллов в традиционную оценку осуществляется в соответствии с «Положением о балльно-рейтинговой системе оценки знаний студентов и обеспечения качества учебного процесса».

10.Информационно-методическое обеспечение дисциплины

10.1 Основная литература:

При изучении дисциплины «Моделирование химико-технологических процессов» в качестве основных источников информации рекомендуется использовать следующую литературу:

Основные источники информации	Кол-во экз.
1.Ефремов Г. И. Моделирование химикотехнологических процессов: Учебник /ЕфремовГ.И М.: НИЦ ИНФРА-М, 2016 255 с.	. ЭБС «Znanium.com» http://znanium.com/catalog.php?bookinfo=51 0221 Доступ из любой точки интернет после регистрации IP адресов КНИТУ
2. Гумеров, А.М. Математическое моделирование химико-технологических процессов [Электронный ресурс]: учеб. пособие — Электрон. дан. — Санкт-Петербург: Лань, 2014. — 176 с.	ЭБС «Лань» https://e.lanbook.com/book/41014 Доступ из любой точки интернета после регистрации с IP-адресов КНИТУ
3. Закгейм А. Ю. Общая химическая технология: введение в моделирование химикотехнологических процессов: учеб. пособие/А.Ю.Закгейм— 3-е изд., перераб. и доп. — М.: Логос, 2012 — 304 с.	ЭБ УНИЦ КНИТУ http://ft.kstu.ru/ft/Zakgeym_ob_him_tehn.pdf Доступ с IP адресов КНИТУ
4. Клинов, А.В. Математическое моделирование химико-технологических процессов: учеб. пособие / Казан. гос. технол. ун-т; А.В. Клинов, А.Г. Мухаметзянова. — Казань: КНИТУ, 2009 — 136 с.	ЭБ УНИЦ КНИТУ http://ft.kstu.ru/ft/978-5-7882-0774-2- Klinov_Mat-modelirovanie.pdf Доступ с IP-адресов КНИТУ
5. Гумеров, Ас.М. Применение пакета MathCad для моделирования технологических процессов: учеб. пособие / Ас.М. Гумеров, Н.Н. Валеев, И.Н. Валеев. — Казань: КНИТУ, 2009.— 115 с ISBN 978-5-7882-0703-2.— <url:< td=""><td>ЭБ УНИЦ КНИТУ http://ft.kstu.ru/ft/Gumerov- primenenie_paketa_MathCAD.pdf>. Доступ с IP-адресов КНИТУ</td></url:<>	ЭБ УНИЦ КНИТУ http://ft.kstu.ru/ft/Gumerov- primenenie_paketa_MathCAD.pdf>. Доступ с IP-адресов КНИТУ
6. Зиятдинов, Н.Н. Математическое моделирование химико-технологических систем с использованием программы ChemCad: учеб. пособие / Н.Н. Зиятдинов, Т.В. Лаптева, Д.А. Рыжов. Казань: КНИТУ, 2008. — 159 с.	113 экз. в УНИЦ в ЭБ УНИЦ http://ft.kstu.ru/ft/978-5-7882-XXX- Zijatdinow_matmod.pdf Доступ с IP-адресов КНИТУ

10.2. Дополнительная литература

В качестве дополнительных источников информации рекомендуется использовать следующую литературу:

Дополнительные источники информации	Кол-во экз.
1. Самойлов, Н.А. Примеры и задачи по курсу "Математическое моделирование химикотехнологических процессов": учеб. пособие — Электрон. дан. — Санкт-Петербург: Лань, 2013. — 176 с.	ЭБС «Лань» https://e.lanbook.com/book/37356#book_name Доступ из любой точки интернета после регистрации с IP-адресов КНИТУ
2. Заиков, Г.Е. Химическая кинетика. Теория и практика: учеб. пособие / Казанский нац. исслед. технол. ун-т; Г.Е. Заиков [и др.]. — Казань: КНИТУ, 2013. — 80 с.	ЭБ УНИЦ КНИТУ http://ft.kstu.ru/ft/Zaikov-khimicheskaya.pdf>. Доступ с IP-адресов КНИТУ
3. Клинов, А.В. Лабораторный практикум по математическому моделированию химикотехнологических процессов: / А.В. Клинов, А.В. Малыгин. — Казань: КНИТУ (Казанский национальный исследовательский технологический университет), 2011. — 99 с.	ЭБ УНИЦ КНИТУ http://ft.kstu.ru/ft/Klinov_lab_pract_mat_model _HTP.pdf Доступ с IP-адресов КНИТУ
5. Гумеров. Ас. М. Математическое моделирование химико-технологических процессов: учеб. пособие / Казан. гос. технол. ун-т; Ас.М. Гумеров [и др.]. — Казань: КНИТУ, 2006. — 214 с.	ЭБ УНИЦ КНИТУ реграфиямите from at mod.pdf Доступ с IP-адресов КНИТУ

10.3. Электронные источники информации

При изучении дисциплины «Моделирование химико-технологических процессов» рекомендуется использование электронных источников информации:

- 1. Электронный каталог УНИЦ КНИТУ. http://ruslan.kstu.ru/
- 2. Научная Электронная Библиотека (НЭБ) Режим доступа: http://elibrarv.ru
- 3. ЭБС «ЮРАЙТ». –http://www.biblio-online.ru/
- 4. ЭБС «Лань». –http://e.lanbook.com/
- 5. Fig. (IPRbooks). http://www.iprbookshop.ru/
- 6. 9EC «Znanium.com». http://www.znanium.com

Согласовано:

Зав. сектором ОКУФ

обдеральное государственное моджетное образовательное учреждения высшего прообсесовельного образования высокай высокай вереговательский его учистовательский его учистовательский высокай высокай высокай высокай высокай в

информационный центр

Володягина А.А.

11. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

Оценочные средства для проведения текущего контроля успеваемости, промежуточной аттестации обучающихся и итоговой (государственной итоговой) аттестации разрабатываются согласно положению о Фондах оценочных средств, рассматриваются как составная часть рабочей программы и оформляются отдельным документом.

12.Материально-техническое обеспечение дисциплины.

Аудитории кафедры ОХЗ корпус И-3 ИХТИ, оборудованные для проведения лекций, практических и лабораторных занятий и консультаций И-336, И-347, И-170, И-182, И-351а. Оборудование учебных аудиторий для проведения практических и лабораторных занятий:

- 1) Посадочные места по количеству обучающихся;
- 2) Рабочее место преподавателя;
- 3) Комплект учебно- методической документации
- 4) Лабораторные установки

Технические средства обучения:

- 1) Персональный компьютер;
- 2) Проекционный экран;
- 3) Мультимедийный проектор;
- Доска;
- 5) Колонки.

13.Образовательные технологии

При осуществлении образовательного процесса по дисциплине <u>Б.1.В.ДВ.10.1.</u> «Моделирование химико-технологических процессов» 16 часов проводятся в интерактивной форме:

- чтение лекций с использованием презентаций,
- решение ситуационных и практических задач группами студентов,
- просмотр учебных фильмов.

Лист переутверждения рабочей программы

Рабочая программа по дисциплине «Моделирование химико-технологических процессов»

По направлению 15.03.02 «"Технологические машины и оборудование» (название)

Профиль подготовки

«Технологическое оборудование химических и

нефтехимических производств»

Авторская программа: Машины и аппараты промышленной экологии для набора обучающихся 2019 года

пересмотрена на заседании кафедры «Оборудования химических заводов»

	Дата	Наличие	Наличие	Подпись	Подпись	Подпись
No	переутверждения	изменений	изменений в	разработ-	заведующего	начальника
п/п	РП (протокол	8	списке	чика РП	кафедрой	УМЦ
	заседания		литературы	Халитов	Махоткин	Китаева Л.А.
	кафедры № <u>19</u>			P.A.	А.Ф,	
	от <u>1706_</u> 20 <u>19</u>)		O.	8 /		In
	N19 17 17.06.2019	Есть	Есть	The first	shel	11/1/10
				1 / C		1.1900)
				3 8	-	

Лицензированное, свободно распространяемое программное обеспечение, используемое в учебном процессе при освоении дисциплины «Моделирование химикотехнологических процессов»

- -MS Office 2010-2016 Standard or 08.11.2016 No 16/2189/5;
- PTC Mathcad Education University Edition of 26.12.2011 № 11/3019
- Mathematica Professional Version Educational от 09.09.2013 № ax036984/ni14014
- Mathcad Education-University Edition 18/2057/5 or 09.06.2018

10. Учебно-методическое и информационное обеспечение дисциплины (модуля) «Моделирование химико-технологических процессов»

10.1 Основная литература

При изучении дисциплины «Моделирование химико-технологических процессов» в качестве основных источников информации рекомендуется использовать следующую литературу:

Основные источники информации	Кол-во экз.
1. Ефремов Г.И. Моделирование химико-	ЭБС «Znanium.com»
технологических процессов / Г.И. Ефремов.	http://znanium.com/go.php?id=989195>.
Учебник -1 – Москва: ООО «Научно-	доступ из любой точки интернет после
издательский центр ИНФРА-М»,2019255 с.	регистрации ІР адресов КНИТУ

ка
1 0 1 1
k&id=
сле
1 1 2
>.
сле
6 = 510
осле
осле
У
an ndf
nn.pdf
-
-2-
ta .
>.
ζ-

10.2 Дополнительная литература

В качестве дополнительных источников информации рекомендуется использовать следующую литературу:

Дополнительные источники информации	Кол-во экз.
Дополнительные источники информации 1. Воробьев Е.С Моделирование химикотехнологических процессов [Электронный ресурс]: учебное пособие: в 2 ч. Ч.1: Статистические расчеты и обработка эксперимента. Реализация решений в среде Microsoft Excel / Е.С. Воробьев, Э.А. Каралин, Ф.И. Воробьева; Казанский нац. исслед. технол. унт. — Казань: Изд-во КНИТУ, 2019.— 104 с.: ил. — Текст: электронный.— ISBN 978-5-7882-2535-7.	Кол-во экз. ЭБ УНИЦ КНИТУ http://ft.kstu.ru/ft/Vorobev- Modelirovanie_khimtekhnol_prots essov_CH1_Stat_raschety_i_obrab otka_eksp.pdf>. Доступ с IP-адресов КНИТУ
2. Воробьев Е.С Моделирование химикотехнологических процессов [Электронный ресурс]: учебное пособие: в 2 ч. Ч.2: Планирование оптимального эксперимента, реализация решений в среде Microsoft Excel / Е.С. Воробьев, Э.А. Каралин, Ф.И. Воробьева; Казан. нац. исслед. технол. ун-т. — Казань: Изд-во КНИТУ, 2019. — 104 с.: — Текст: электронный. — ISBN 978-5-7882-2535-7.	ЭБ УНИЦ КНИТУ http://ft.kstu.ru/ft/Vorobev- Modelir khim tekhnol prots Ch2 planir optim eksperim.pdf> Доступ с IP-адресов КНИТУ
3. Самойлов, Н.А. Примеры и задачи по курсу "Математическое моделирование химикотехнологических процессов": учеб. пособие — Электрон. дан. — Санкт-Петербург: Лань, 2013. — 176 с.	ЭБС «Лань» https://e.lanbook.com/book/37356# book_name Доступ из любой точки интернета после регистрации с IP-адресов КНИТУ
4. Заиков, Г.Е. Химическая кинетика. Теория и практика: учеб. пособие / Казанский нац. исслед. технол. ун-т; Г.Е. Заиков [и др.] .— Казань: КНИТУ, 2013 .— 80 с.	ЭБ УНИЦ КНИТУ http://ft.kstu.ru/ft/Zaikov-khimicheskaya.pdf >. Доступ с IP-адресов КНИТУ
5. Клинов, А.В. Лабораторный практикум по математическому моделированию химикотехнологических процессов: / А.В. Клинов, А.В. Малыгин. — Казань: КНИТУ (Казанский национальный исследовательский технологический университет), 2011. — 99 с.	ЭБ УНИЦ КНИТУ http://ft.kstu.ru/ft/Klinov_lab_pract mat_model_HTP.pdf Доступ с IP-адресов КНИТУ
6. <u>Гумеров</u> , Ас. М. Математическое моделирование химико-технологических процессов: учеб. пособие / Казан. гос. технол. ун-т; Ас.М. Гумеров [и др.].— Казань: КНИТУ, 2006.—214 с.	ЭБ УНИЦ КНИТУ http://ft.kstu.ru/ft/matmod.pdf Доступ с IP-адресов КНИТУ

10.3 Электронные источники информации

При изучении дисциплины «Моделирование химико-технологических процессов» в качестве электронных источников информации, рекомендуется использовать следующие источники:

- 1. Электронный каталог УНИЦ КНИТУ Режим доступа: https://ruslan.kstu.ru/
- 2. ЭБС «Университетская библиотека ONLINE» Режим доступа: http://biblioclub.ru
- 3. ЭБС «ЮРАЙТ» Режим доступа: http://biblio-online.ru
- 4. ЭБС «Лань». Режим доступа: https://e.lanbook.com
- 5. ЭБС «Znanium.com» Режим доступа: https://znanium.com

10.4 Профессиональные базы данных и информационные справочные системы

Название	Краткое описание	Режим доступа
Научная элетронная библиотека Elibrary	Носсийский информационно- аналитический портал в области науки, технологии и образования, содержащий рефераты и полные тексты более 29 млн научных статей и публикаций.	www.elibrary.ru Доступ свободный
Информационная система "Единое окно доступа к образовательным ресурсам"	Ресурс обеспечивает свободный доступ к интегральному каталогу образовательных интернет-ресурсов, к электронной библиотеке учебнометодических материалов для общего и профессионального образования.	http://window.edu.ru/ Доступ свободный
Электронно- библиотечная система IPRbooks	Предоставляет доступ к издательским коллекциям, включая как электронные версии книг издательства, так и коллекции полнотекстовых файлов других издательств.	www.iprbookshop.ru Доступ свободный
Образовательная платформа «Юрайт»	Это виртуальный читальный зал учебников и учебных пособий от авторов из ведущих вузов России.	www.urait.ru Доступ свободный

Согласовано: УНИЦ КНИГУ