Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Казанский национальный исследовательский технологический университет» (ФГБОУ ВО «КНИТУ»)

УТВЕРЖДАЮ Проректор по УР А.В. Бурмистров

*О*7. 2019 г.

РАБОЧАЯ ПРОГРАММА

По дисциплине «Сопротивление материалов»

Направление подготовки: 28.03.02- «Наноинженерия»

Профиль подготовки: Органические и неорганические наноматериалы

Квалификация выпускника Форма обучения Институт, факультет Кафедра-разработчик рабочей программы Курс 2, семестр 3

БАКАЛАВР ОЧНАЯ ИНХН, ФНН ТМиСМ

	Часы	Зачетные единицы
Лекции	18	0,5
Практические занятия	18	0,5
Лабораторные занятия	18	0,5
Самостоятельная работа	54	1,5
Форма аттестации:	зачет	-
Всего	108	3

Рабочая программа составлена с учетом требований Федерального государственного образовательного стандарта высшего образования от 19.09.2017 № 923 по направлению 28.03.02— «Наноинженерия», профиль «Органические и неорганические наноматериалы».

Типовая программа по дисциплине отсутствует.

Рабочая программа составлена для набора обучающихся 2019 г.

Разработчик программы:

Профессор каф. ТМ и СМ (должность)

 $\frac{\text{Тазюков }\Phi.X.}{(\Phi.\text{И.O})}$

Рабочая программа рассмотрена и одобрена на заседании кафедры <u>ТМ и СМ</u> протокол от 20.06 2019 г. № 7

Зав. кафедрой,

профессор

Серазутдинов М.Н.

СОГЛАСОВАНО

Заведующий кафедрой ПНТВМ, доцент

(подпись)

<u>Вознесенский Э.Ф.</u> (Ф.И.О.)

Начальник УМЦ, доцент

(подпись)

Л.А.Китаева

1. Цели освоения дисциплины

Целями освоения дисциплины «Сопротивление материалов» являются:

- а) формирование знаний о прочности, жесткости и устойчивости как необходимых условиях надежности технологических машин и оборудования,
- б) обучение методам прочностных расчетов элементов технологических машин и оборудования,
- в) обучение методам испытаний материалов и конструкций.

2. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Сопротивление материалов» относится к обязательной части ООП и формирует у бакалавров по направлению подготовки 28.03.02— «Наноинженерия» набор знаний, умений, навыков и компетенций.

Для успешного освоения дисциплины «Сопротивление материалов» по направлению подготовки 28.03.02— «Наноинженерия», бакалавр должен освоить материал предшествующих дисциплин:

- а) математика,
- б) информатика
- в) физика.

Дисциплина «Сопротивление материалов» является предшествующей и необходимой для успешного усвоения последующих дисциплин:

- устройство и проектирование производств наноматериалов.

Знания, полученные при изучении дисциплины «Сопротивление материалов» могут быть использованы при прохождении практик и при выполнении выпускных квалификационных работ по направлению подготовки 28.03.02— «Наноинженерия».

3. Компетенции и индикаторы достижения компетенции обучающегося, формируемые в результате освоения дисциплины

- ОПК-1 Способен решать задачи профессиональной деятельности на основе применения естественнонаучных и общеинженерных знаний, методов математического анализа и моделирования.
- ОПК-1.1 Знает основы теоретических и экспериментальных методов исследований и моделирования физических и химических систем, явлений и процессов.
- ОПК-1.2 Умеет использовать математический аппарат, физико-химические законы и приципы для решения профессиональных задач.
- ОПК-1.3 Владеет навыками использования математического аппарата для описания, анализа, теоретического и экспериментального исследования и моделирования физических и химических систем, явлений и процессов; экспериментальными методами определения физико-химических свойств материалов и изделий из них.
- ОПК-5 Способен принимать обоснованные технические решения в профессиональной деятельности, выбирать эффективные и безопасные технические средства и технологии.
- ОПК-5.1 Знает основы технических решений в профессиональной деятельности, подходы к выбору безопасных технических средств и технологий.
- ОПК-5.2 Умеет выбирать перечень технических средств и технологий, обеспечивающих эффективность и безопасность технических решений в профессиональной деятельности.
- ОПК-5.3 Владеет навыками принятия обоснованных технических решений в профессиональной деятельности с позиции безопасности и эффективности.

- ОПК-6 Способен участвовать в разработке технической документации, связанной с профессиональной деятельностью на основе применения стандартов, норм и правил.
- ОПК-6.1 Знает стандарты, правила и нормы при выполнении технической и конструктивной документации, связанной с профессиональной деятельностью.
- ОПК-6.2 Умеет проектировать решение конкретной задачи проекта, выбирая оптимальный способ и исходя из действующих правил и условностей при выполнении проектной документации и имеющихся ресурсов и ограничений.
- ОПК-6.3 Владеет навыками составления отчетов по экспериментальным и теоретическим исследованиям, практической деятельности в соответствии с установленными требованиями.

В результате освоения дисциплины обучающийся должен:

1) Знать:

- а) основы теоретических и экспериментальных методов испытания конструкционных материалов и моделирования элементов конструкций;
- б) основы расчета элементов конструкций на прочность, жесткость, устойчивость;
- в) свойства, характеристики, методы испытания конструкционных материалов, испытательные машины и измерительные приборы и выбирать конструкционные материалы в соответствии с требуемыми характеристиками для использования в области профессиональной деятельности.

2) Уметь:

- а) использовать математический аппарат, физические законы и принципы для решения задач на прочность, жесткость и устойчивость элементов конструкций;
- б) выбирать перечень технических средств и технологий, обеспечивающих эффективность и безопасность технических решений в профессиональной деятельности;
- в) выполнять проверочные и проектировочные расчеты типовых элементов инженерных конструкций и технологических машин и оборудования в виде стержней, пластин и оболочек в соответствии с требованиями действующих норм и правил.

3) Владеть:

- а) навыками использования математического аппарата для описания, анализа, теоретического и экспериментального исследования и моделирования материалов и элементов конструкций, экспериментальными методами определения механических характеристик материалов;
- б) навыками принятия обоснованных технических решений при решении задач на прочность, жесткость и устойчивость элементов конструкций с позиции их безопасности и эффективности;
- в) навыками составления отчетов по экспериментальным и теоретическим исследованиям, в соответствии с установленными требованиями.

4. Структура и содержание дисциплины «Сопротивление материалов»

Общая трудоемкость дисциплины составляет 3 зачетные единицы, 108 часов.

№				Виды	учебной (в часах)	Оценочные средства для
п/п	Раздел дисциплины	Семестр	Лек- ция	Практ. зан.	Лаб. раб.	CPC	проведения промежуточной аттестации по разделам
1	Введение	3	2	-	-	-	
2	Растяжение и сжатие	3	2	2	6	8	Расчетно-графическая работа, лабораторная работа, контрольная работа,
3	Теория напряженного и деформированного со- стояния и теории проч- ности	3	2	2	ı	6	лабораторная работа
4	Геометрические характеристики сечений	3	2	-	-	6	Расчетно-графическая работа
5	Сдвиг и кручение	3	2	2	2	6	лабораторная работа
6	Плоский изгиб	3	2	4	4	8	Расчетно-графическая работа, лабораторная работа, контрольная работа.
7	Сложное сопротивление	3	2	4	4	8	контрольная работа, лабораторная работа.
8	Устойчивость сжатых стержней	3	2	2	2	6	лабораторная работа
9	Расчет тонких оболочек	3	2	2	-	6	-
	Итого		18	18	18	54	
	Форма аттестации					зачет	

5. Содержание лекционных занятий по темам

№ п/п	Тема лекционно- го занятия	Ч _{а-} сы	Краткое содержание	Индикато- ры дости- жения компетен-
1	2	3	4	ции 5
1	Введение	2	Основные задачи сопротивления материалов. Реальный объект и расчетная схема. Основные гипотезы сопротивления материалов. Классификация внешних сил. Понятие о внутренних силах. Внутренние силовые факторы. Понятие о напряжениях. Связь между напряжениями и внутренними силовыми факторами. Понятия о деформациях.	ОПК-1.1, ОПК-1,2, ОПК-1.3, ОПК-5.1, ОПК-5,2, ОПК-5.3, ОПК-6.1, ОПК-6.2,
2	Растяжение и	2	Напряжения в поперечном сечении. Напряжения по	ОПК-1.1,

	017407777		иомполиции пл пиомполиции Пофольности Весте Бесте	ОПИ 1.2
	сжатие		наклонным площадкам. Деформации. Закон Гука.	ОПК-1,2,
			Упругие и прочностные свойства материала. Усло-	ОПК-1.3,
			вие прочности при растяжении-сжатии. Три типа	ОПК-5.1,
			прочностных расчетов. Простейшие статически	ОПК-5,2,
			неопределимые системы. Учет собственного веса	ОПК-5.3,
			стержня. Брус равного сопротивления. Потенциаль-	ОПК-6.1,
			ная энергия деформации.	ОПК-6.2,
				ОПК-6.3
			Понятие о напряженном состоянии в точке. Главные	
			площадки и главные напряжения. Виды напряжен-	
			ных состояний. Плоское напряженное состояние.	ОПК-1.1,
			Прямая задача - определение напряжений по	ОПК-1,2,
	Теория напря-		наклонной площадке. Обратная задача - определе-	ОПК-1.3,
	женного и де-		ние главных напряжений и главных площадок. При-	ОПК-5.1,
3	формированного	2	меры: всестороннее сжатие, чистый сдвиг. Обоб-	ОПК-5,2,
	состояния и тео-		щенный закон Гука. Предельное значение коэффи-	ОПК-5.3,
	рия прочности.		циента Пуассона. Потенциальная энергия деформа-	ОПК-6.1,
			ции: полная, энергия изменения объема, энергия из-	ОПК-6.2,
			менения формы.	ОПК-6.3
			Теории прочности. Назначение, расчетные формулы	
			по различным теориям прочности.	
			1 1	ОПК-1.1,
			Площадь, статические моменты, моменты инерции:	ОПК-1,2,
			осевой, центробежный, полярный. Моменты инер-	ОПК-1.3,
	Геометрические		ции простейших фигур. Моменты инерции сложных	ОПК-5.1,
4	характеристики	2	сечений. Изменение моментов инерции при парал-	ОПК-5,2,
	сечений	_	лельном переносе и повороте осей координат. Глав-	ОПК 5,2,
	ССЧСПИИ		ные оси. Главные моменты инерции. Эллипс инер-	ОПК-5.3,
			ции.	ОПК-6.1,
			ции.	ОПК-6.2,
				ОПК-0.3
			Пуюту ў одруг Модулу одруго Срязу модулу тромя	
			Чистый сдвиг. Модуль сдвига. Связь между тремя	ОПК-1,2,
			упругими константами: модулем упругости, моду-	ОПК-1.3,
5	Сдвиг и круче-	2	лем сдвига и коэффициентом Пуассона. Напряжения	ОПК-5.1,
5	ние	2	при кручении вала круглого сечения Условие проч-	ОПК-5,2,
			ности при кручении. Определение угла закручива-	ОПК-5.3,
			ния и условия жесткости. Потенциальная энергия	ОПК-6.1,
			деформации при кручении.	ОПК-6.2,
				ОПК-6.3
			Внутренние силовые факторы при плоском изгибе.	
			Дифференциальные зависимости между Мх, Qу и q.	
			Эпюры Q и M для балок. Нормальные напряжения	ОПК-1.1,
			в поперечном сечении балки. Условие прочности.	ОПК-1,2,
			Рациональные формы сечений балок. Потенциаль-	ОПК-1.3,
			ная энергия деформации при изгибе. Касательные	ОПК-5.1,
6	Плоский изгиб	2	напряжения при плоском изгибе. Формула	ОПК-5,2,
			Д.И.Журавского. Напряженное состояние при плос-	ОПК-5.3,
			ком изгибе. Полная проверка прочности. Дифферен-	ОПК-6.1,
			циальное уравнение изогнутой оси балки и его инте-	ОПК-6.2,
			грирование. Универсальное уравнение изогнутой	ОПК-6.3
			оси балки. Общие дифференциальные зависимости	
			при плоском изгибе. Условие жесткости.	
7	Сложное сопро-	2	Косой изгиб. Внецентренное растяжение (сжатие).	ОПК-1.1,
	Chowner compo-		косои изгио. онсцентренное растяжение (сжатие).	O11K-1.1,

	T			
	тивление		Нормальные напряжения в сечении, уравнение	ОПК-1,2,
			нейтральной оси, опасное сечение, опасная точка в	ОПК-1.3,
			сечении. Изгиб с кручением. Условие прочности.	ОПК-5.1,
			Эквивалентный момент.	ОПК-5,2,
				ОПК-5.3,
				ОПК-6.1,
				ОПК-6.2,
				ОПК-6.3
				ОПК-1.1,
				ОПК-1,2,
			п	ОПК-1.3,
	Устойчивость		Понятие устойчивого равновесия. Формула Эйлера.	ОПК-5.1,
8	сжатых стерж-	2	Обобщенная формула Эйлера, пределы применимо-	ОПК-5,2,
	ней		сти формулы. Формула Ф.С.Ясинского. Расчет сжа-	ОПК-5.3,
			тых стержней по коэффициенту ф.	ОПК-6.1,
				ОПК-6.2,
				ОПК-6.3
				ОПК-1.1,
				ОПК-1,2,
			Основные понятия. Безмоментная теория тонких	ОПК-1.3,
	_		оболочек вращения. Уравнение Лапласа. Уравнение	ОПК-5.1,
9	Расчет тонких	2	зоны. Примеры расчета оболочек – сферической,	ОПК-5,2,
	оболочек	-	цилиндрической, конической. Расчет на гидростати-	ОПК-5.3,
			ческое давление.	ОПК-6.1,
			теское давление.	ОПК-6.2,
				ОПК-6.3
		1		0.0-0.3

6. Содержание практических занятий

Целью проведения практических занятий является освоение лекционного материала, необходимого для формирования знаний о прочности, жесткости и устойчивости технологических машин и оборудования и изучение методов их прочностных расчетов.

№ п/п	Раздел дис- циплины	Часы	Тема практического занятия	Индикаторы до- стижения компе- тенции
1	2	2	Статически определимые задачи растяжениясжатия	
2	3	2	Теория напряженного и деформированного состояния и теории прочности	ОПК-1.1, ОПК-1,2,
3	5	2	Сдвиг и кручение валов	ОПК-1.3,
4	6	2	Плоский изгиб. Эпюры ВСФ	ОПК-5.1,
5	6	2	Проектировочный расчет балки из условий	ОПК-5,2,
			прочности и жесткости	ОПК-5.3,
6	7	2	Косой изгиб. Внецентренное растяжение и сжа-	ОПК-6.1,
			тие	ОПК-6.2,
7	7	2	Изгиб с кручением	ОПК-6.3
8	8	2	Расчет сжатых стержней на устойчивость	
9	9	2	Расчет тонких и толстых оболочек	

7. Содержание лабораторных занятий

Цель проведения лабораторных занятий — освоение лекционного материала, касающегося методов определения основных механических характеристик материалов, экспериментальной проверки теоретических расчетов, а также выработка студентами определенных умений, связанных с расчетами типовых элементов конструкций, и навыков, связанных с методами испытаний материалов.

№ п/п	Раздел дис- циплины	Часы	Наименование лабораторной работы	Индикаторы до- стижения компе- тенции
1	2	2	Испытание металлов на растяжение	
2	2	2	Испытание пластичных и хрупких материалов на сжатие	
3	2	2	Определение упругих характеристик материалов	ОПК-1.1,
4	5	2	Исследование напряженного состояния вала при кручении	ОПК-1,2, ОПК-1.3, ОПК-5.1,
5	6	2	Исследование распределения напряжений по высоте балки	ОПК-5,2, ОПК-5.3,
6	6	2	Определение касательных напряжений при плоском изгибе	ОПК-6.1, ОПК-6.2, ОПК-6.3
7	7	2	Экспериментальное исследование косого изгиба	
8	7	2	Экспериментальное исследование напряженного состояния при изгибе с кручением	
9	8	2	Определение критической силы	

Лабораторные работы проводятся в помещении учебной лаборатории кафедры с использованием лабораторных установок.

8. Самостоятельная работа студента

№	Темы, выносимые на самостоятельную работу	Часы	Форма СРС	Индикаторы достижения компетенции
1	Расчетная работа 1 «Расчет статически определимой стержневой системы»;	6	Оформление отчета по СРС, защита	
2	Лабораторная работа №1. Испытание металлов на растяжение.	4	Подготовка к лабораторной работе и оформление отчета	
3	Лабораторная работа №2. Испытание пластичных и хрупких материалов на сжатие.	4	Подготовка к лабораторной работе и оформление отчета	
4	Лабораторная работа №3. Определение упругих характеристик материалов.	4	Подготовка к лабораторной работе и оформление отчета	
5	Лабораторная работа №4. Исследование напряженного состояния вала при кручении	4	Подготовка к лабораторной работе и оформление отчета	ОПК-1.1, ОПК-1,2,
6	Расчетная работа №2 «Расчет статически определимой балки на прочность и жесткость»	10	Оформление отчета по СРС, защита	ОПК-1.3, ОПК-5.1,

7	Лабораторная работа №5. Исследование распре-	4	Подготовка к лабора-	ОПК-5,2,
	деления напряжений по высоте балки.		торной работе и	ОПК-5.3,
	, , , , , , , , , , , , , , , , , , , ,		оформление отчета	ОПК-6.1,
8	Лабораторная работа №6. Определение каса-	4	Подготовка к лабора-	ОПК-6.2,
	тельных напряжений при плоском изгибе.		торной работе и	ОПК-6.3
			оформление отчета	
9	Расчетная работа №3 «Расчет вала на изгиб с	6	Оформление отчета	
	кручением»		по СРС, защита	
10	Лабораторная работа №7. Экспериментальное	4	Подготовка к лабора-	
	исследование косого изгиба.		торной работе и	
			оформление отчета	
11	Лабораторная работа №8. Экспериментальное	2	Подготовка к лабора-	
	исследование напряженного состояния при из-		торной работе и	
	гибе с кручением.		оформление отчета	
12	Лабораторная работа №9. Определение критиче-	2	Подготовка к лабора-	
	ской силы.		торной работе и	
			оформление отчета	

9. Использование рейтинговой системы оценки знаний.

При оценке результатов деятельности студентов в рамках дисциплины «Сопротивление материалов» используется балльно-рейтинговая система. Рейтинговая оценка формируется на основании текущего и промежуточного контроля в соответствии с «Положением о балльно-рейтинговой системе оценки знаний студентов и обеспечения качества учебного процесса» ФГБОУ ВО КНИТУ.

При изучении дисциплины «Сопротивление материалов» предусматривается экзамен, выполнение 2 расчетно-графических работ, 3 контрольных работ и 9 лабораторных работ. За эти контрольные точки студент может получить минимальное и максимальное количество баллов (см. таблицу).

Вид работ	Количе- ство ра- бот	Минимальная сумма баллов	Максимальная сумма баллов
Расчетно-графическая работа	2	18	28
Лабораторная работа	9	18	36
Контрольная работа	3	24	36
Зачет		60	100

10. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

Оценочные средства для проведения текущего контроля успеваемости, промежуточной аттестации обучающихся и итоговой (государственной итоговой) аттестации разрабатываются согласно положению о Фондах оценочных средств, рассматриваются как составная часть рабочей программы и оформляются отдельным документом.

11. Учебно-методическое и информационное обеспечение дисциплины

11.1 Основная литература

При изучении дисциплины «Сопротивление материалов» в качестве основных источников информации рекомендуется использовать следующую литературу:

1. Сопротивление материалов [Электронный ресурс] /	ЭБС «Консультант студента»
Межецкий Г. Д М. : Дашков и К, 2013.	http://www.studentlibrary.ru/book/IS
	BN9785394019722.html
	Доступ из любой точки интернета
	после регистрации по IP адресам
	КНИТУ
2. Сборник задач по сопротивлению материалов	ЭБС «Лань».
[Электронный ресурс] : учеб. пособие / Н.М. Беляев	https://e.lanbook.com/book/2022.
[и др.]. — Электрон. дан. — Санкт-Петербург:	Доступ из любой точки интернета
Лань, 2011. — 432 с.	после регистрации по IP адресам
	КНИТУ
3. Валиуллин, А. Х. Сопротивление материалов: учеб.	70 экз. в УНИЦ КНИТУ
пособие для студентов / Казанский нац. исслед.	
технол. ун-т .— Казань, 2014 .— 389 с.	
4. Прикладная механика: учебник: 2-е изд., перераб. /	300 экз. в УНИЦ КНИТУ
М.Н. Серазутдинов, Н.П. Петухов, Э. Н. Остров-	
ская, С.Г. Сидорин; – Казань: Центр инновацион-	
ных технологий, 2016. – 326 c.	
5. Степин П.А. Сопротивление материалов: учебник /	ЭБС «Лань».
Степин П.А. – 13-е изд., стер. – С-Пб.: Лань, 2014. –	http://e.lanbook.com/book/3179.
320 с. Степин, П.А. Сопротивление материалов	Доступ из любой точки интернета
[Электронный ресурс] : учеб. — Электрон. дан. —	после регистрации по IP адресам
Санкт-Петербург: Лань, 2014. — 320 с.	КНИТУ

11.2 Дополнительная литература

В качестве дополнительных источников информации рекомендуется использовать следующую литературу:

1.	Сопротивление материалов. Лабораторные работы на универсальном стенде: методические указания/ Казан. нац. исслед. технол. ун-т; сост.: К.А. Абдулхаков [и др.]. – Казань, 2009. – 37 с.	ЭБ УНИЦ. Ссылка http://ft.kstu.ru/ft/978-5-7882-XXX-Abdulhakov-SM.pdf Доступ с IP-адресов КНИТУ
2.	Прикладная механика. Контрольные задания: учебное пособие /Казан. нац. исслед. технол. ун-т; сост.: сост.: Х.С. Гумерова[и др.]. – Казань, 2014. – 143 с.	70 экз. в УНИЦ КНИТУ ЭБ УНИЦ. Ссылка http://ft.kstu.ru/ft/Gumerova- prikladnaya_mekhanika.pdf Доступ с IP-адресов КНИТУ
3.	Валиуллин, А.Х.; Серазутдинов, М.Н.; Сидорин, С.Г.; Хайруллин, Ф.С Сопротивление материалов/ Валиуллин, А.Х.; Серазутдинов, М.Н.; Сидорин, С.Г.; Хайруллин, Ф.С Казань: КНИТУ, 2012 64 с.	http://ft.kstu.ru/ft/valiullin-soprotivlenie.pdf Доступ с IP-адресов КНИТУ

В том числе учебники, учебные пособия, учебно-методические пособия, учебно-методические указания, монографии, практикумы, тексты лекций, сборники конференций.

11.3 Электронные источники информации

При изучении дисциплины «Сопротивление материалов» в качестве электронных источников информации, рекомендуется использовать следующие источники:

- 1. Электронный каталог УНИЦ КНИТУ http://ruslan.kstu.ru/
- 2. ЭБС «Лань» http://e.lanbook.com/
- 3. ЭБС «Консультант студента» http://www.studentlibrary.ru

Согласовано:

Зав. сектором ОКУФ

11.4. Современные профессиональные базы данных и информационные справочные системы

1.elibrary.ru. – Доступ свободный: http://www.elibrary.ru

- 2. Russian Science Citation Index (RSCI). Доступ κ RSCI: http://www.clarivate.ru
- 3. SCOPUS. Доступ к scopus: http://www.scopus.com

12. Материально-техническое обеспечение дисциплины (модуля)

Учебные аудитории для проведения учебных занятий оснащены иллюстрационными материалами и проектором.

Лаборатория «Сопротивление материалов» оснащены следующими лабораторными установками:

- 1) испытательная машина МИ-40 для испытания материалов на растяжение и сжатие;
 - 2) разрывная машина MP-0.5 для определения характеристик упругости материалов;
- 3) экспериментальная установка для исследования напряженного состояния вала трубчатого поперечного сечения при изгибе с кручением;
- 4) экспериментальная установка для испытания балки при изгибе, измерения деформаций электротензометрическим методом, испытания материалов при кручении, определения напряжений при кручении вала трубчатого поперечного сечения, определения прогибов консольной балки при косом изгибе,
- 5) экспериментальная установка для испытания стержня при внецентренном сжатии;
- 6) экспериментальная установка для испытания стержня на устойчивость при осевом сжатии.

Лицензированное программное обеспечение и свободно распространяемое программное обеспечение, в том числе отечественного производства, используемое в учебном процессе при освоении дисциплины «Сопротивление материалов»:

- 1. MS Office 2010-2016 Standard
- 2. Mathematica Professional Version Educational
- 3. PTC Mathcad Education University Edition

13. Образовательные технологии

Весь лекционный курс обеспечен учебными пособиями, раздаточным материалом и комплектом иллюстрационных методических материалов. При проведении защит лабораторных и расчетных организуются дискуссии между студентами.

Занятия, проводимые в интерактивных формах, при изучении дисциплины «Сопротивление материалов» составляют 18 час. аудиторных занятий.

В рамках изучения дисциплины «Сопротивление материалов» применяются следующие основные интерактивные формы проведения учебных занятий:

- творческие задания;
- работа в малых группах;
- дискуссия;
- системы дистанционного обучения.
- метод кейсов.