МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ (МИНОБРНАУКИ РОССИИ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ СИНТЕТИЧЕСКИХ ПОЛИМЕРНЫХ МАТЕРИАЛОВ им. Н.С. ЕНИКОЛОПОВА РОССИЙСКОЙ АКАДЕМИИ НАУК (ИСПМ РАН)

117393, Москва, ул. Профсоюзная, 70 Тел./факс: (495) 335-91-00 Факс: (495) 718-34-04 e-mail: dir@ispm.ru

ИНН 7728021249 ОГРН 1037739764171 ОКПО 02699257

12114	Nº 02	2115	1146
на №		0	

УТВЕРЖДАЮ

Заместитель директора по научной работе Федерального государственного бюджетного учреждения науки «Институт синтетических полимерных материалов им. Н.С. Ениколопова Российской академии наук» доктор

химических наук

Бермешев М.В.

«14»

мая 2025 г.

ОТЗЫВ ВЕДУЩЕЙ ОРГАНИЗАЦИИ

на диссертационную работу Габдрахмановой Гульназ Мазгаровны на тему «Модифицированные порошковые эпоксидные связующие и технология получения углепластиков на их основе» представленную на соискание ученой степени кандидата технических наук по специальности 2.6.11. «Технология и переработка синтетических и природных полимеров и композитов».

Актуальность темы. Композиционные материалы на основе эпоксидных смол прочно заняли свою нишу в самых разных отраслях - от аэрокосмической до автомобильной промышленности. Традиционно всё используются жидкие эпоксидные системы, однако популярность приобретают порошковые эпоксидные КМ. Их механические свойства уже сопоставимы с традиционными аналогами, но при этом порошковые технологии обладают рядом неоспоримых преимуществ, которые открывают новые перспективы для развития композитных материалов. Процесс отверждения порошковых эпоксидных КМ сопровождается меньшим выделением тепла по сравнению с традиционными системами. Порошковые системы демонстрируют стабильное отверждение в широком температурном диапазоне без существенного увеличения степени отверждения, что упрощает

производственный процесс и повышает его надежность. Несмотря на явные преимущества, исследования порошковых связующих бензоксазинов и циановых эфиров бисфенолов пока находятся на начальной стадии. Эти материалы обладают уникальными свойствами, которые могут значительно расширить возможности порошковых эпоксидных КМ, например, повысить термостойкость и химическую стойкость конечного продукта. Особое внимание заслуживает технология электростатического напыления. Широко используемая в лакокрасочной промышленности, она лишь недавно нашла применение в обработке углеродных волокон, преимущественно в 3Dпечати. Однако, потенциал этой технологии для нанесения порошковых связующих на углеродные ткани пока не раскрыт в полной мере. Разработка эффективных электростатического напыления методов порошковых эпоксидных смол на углеродные ткани открывает путь к созданию новых типов композитов с улучшенными свойствами и более сложной геометрией. В задача разработки время остро электропроводящих настоящее стоит порошковых композиций на основе эпоксидных смол. Это позволит расширить область применения КМ в электронике, сенсорике и других высокотехнологичных отраслях. Также необходимы дальнейшие исследования по оптимизации процесса электростатического напыления, эффективности и получаемых на повышение качества направленные композитов. Исследования в области новых типов порошковых связующих, таких как бензоксазины и циановые эфиры, являются перспективными для создания композитов с улучшенными характеристиками. С этой точки зрения тема диссертационной работы, посвященная разработке модифицированных порошковых эпоксидных связующих и технологии получения углепластиков на их основе, представляется актуальной и отвечает потребностям развития технологий.

Первая глава представляет собой обзор литературы, в котором приведены сведения о конструкционных матрицах для изделий из композитов, которые благодаря своим эксплуатационным характеристикам являются очень

перспективными. Однако, ввиду высоких значений вязкости даже при повышенных температурах не нашли широкого применения в традиционных технологиях переработки термореактивных полимеров. Рассмотрены технологии получения армированных композитов из ПКМ и показана перспективность применения прессового формования и метода получения препрегов, основанная на напылении образцов из углеродного волокна порошковыми композициями с использованием статического электричества. Рассмотрено использование порошковых наполнителей для получения свойств дополнительных функциональных матрицы, частности характеристик. Такие параметры электрических наполнителя как концентрация, размер, тип и обеспечение равномерности распределения частиц по всему объему полимерного композита являются крайне важными.

Вторая глава посвящена описанию методики синтеза бензоксазинового соединения на основе бисфенола А и анилина, получению однородной порошковой композиции. Приведены методы исследования как неотвержденных и отвержденных модифицированных эпоксидных порошковых связующих, так и полученных углекомпозитов на их основе.

В третьей главе представлены основные результаты, полученные автором. Обсуждение диссертационной работы разделено на 3 части. В первом разделе данной главы показана технология получения твердых препрегов с применением электростатического напыления, которые обладают высокой поперечной проницаемостью. Данные препреги консолидируются в пластины необходимой толщины под вакуумным мешком дальнейшем используются для получения изделия методом термоформования. Во втором разделе исследован процесс отверждения эпокси-бензоксазиновых систем c различным массовым содержанием бензоксазина, проведен анализ ИХ теплофизических свойств реокинетические исследования для оптимизации процесса термоформования Приведены консолидированных пластин. результаты механических испытаний пластин на растяжение и сжатие и продемонстрирована технология получения тестового изделия из углекомпозита на основе эпоксиднобензоксазинового полимера. В третьем разделе осуществлена электрического сопротивления связующего, наполненного токопроводящим наполнителем, проведен анализ реологических параметров и приведена объемная концентрация токопроводящего наполнителя. Продемонстрирована технологическая линия для изготовления консолидированных пластин. В диссертации содержатся 5 выводов, которые заключении являются обоснованными и достоверными, и полностью соответствуют поставленным задачам.

Научная новизна. Предложена безрастворная технология получения порошковых препрегов и консолидированных пластин на их основе методом электростатического напыления на углеткани с использованием модифицированных порошковых эпоксидных связующих. В результате целенаправленного регулирования реологических характеристик порошковых связующих, осуществленного посредством доотверждения и добавления наполнителей, было достигнуто снижение межслоевого трения в процессе термоформования.

Теоретическая и практическая значимость. В диссертации решена важная научно-практическая задача: предложена эффективная безрастворная получения порошковых препрегов технология c использованием электростатического напыления модифицированных порошковых эпоксидных связующих, а также получения композиционных материалов на их основе. Полученные результаты могут быть использованы на предприятиях АО «ИСС» им. ак. М.Ф. Решетнёва», ПАО «ОДК Сатурн», ООО «Аэрокон» и др. Они будут способствовать повышению эффективности технологического термоформования углекомпозитов процесса за счет возможности автоматизации стадий напыления порошкообразного связующего, консолидации пакета препрегов с использованием вакуумного мешка и термопрессования. Достоверность полученных результатов обеспечивается высоким методическим уровнем проведения эксперимента и использованием поверенного оборудования.

Диссертационная работа состоит из введения, трех глав, заключения, списка использованных источников (160 наименований), изложена на 117 страницах, содержит 12 таблиц и 56 рисунков. Результаты диссертации полно опубликованы в ведущих научных журналах и изданиях (4 статьи изданы в журналах, рекомендованных ВАК РФ для рассматриваемой научной специальности, 2 статьи - в издании, индексируемом в базах Web of Science и Scopus), автором получено 3 патента на изобретение. Результаты исследования апробированы на профильных конференциях (13 тезисов докладов на Международных и Всероссийских конференциях).

Замечания:

- 1. Почему при расчете кинетических параметров по данным отверждения в динамическом режиме использована модель Камала-Соурера и соответвующее уравнение, в которое входят только два слагаемых, каждое которых них содержит свою энергию активации, тогда как в системе присутствуют 3 реакционных компонента?
- 2. Хорошо было бы часть диссертации, посвященную наполненным системам, дополнить данными о влиянии концентрации токопроводящего наполнителя на прочность волокнистых композитов.
- 3. На ДСК имеются двухмодовые и одномодовые кривые, соответствующие отдельным реакционным компонентам. Сохраняют ли эти компоненты свою фазовую индивидуальность в конечном материале или образуют структуру взаимопроникающих сеток?
- 4. В работе не рассмотрено термическое расширение дисперсно-наполненного армированного композита.
- 5. В тексте диссертации присутствуют ошибка в нумерации страниц. Кроме того, встречаются стилистические ошибки и опечатки.

Следует отметить, что приведенные замечания не носят принципиального характера и не влияют на общую положительную оценку диссертационной работы.

Заключение

Диссертация Габдрахмановой Г.М. представляет собой завершенное научное исследование, соответствующее паспорту научной специальности 2.6.11. «Технология и переработка синтетических и природных полимеров и композитов».

Содержание автореферата и сформулированные в нем выводы полностью соответствуют представленным в диссертации результатам исследований. Работа выполнена автором самостоятельно на достаточно высоком научном уровне. Представленные в работе исследования достоверны, выводы обоснованы.

Диссертационная работа соответствует требованиям п. 9 «Положения о присуждении ученых степеней», предъявляемым к кандидатским диссертациям, а ее автору Габдрахмановой Гульназ Мазгаровне может быть присуждена ученая степень кандидата технических наук по специальности 2.6.11. «Технология и переработка синтетических и природных полимеров и композитов».

Диссертационная работа заслушана и обсуждена на заседании расширенного семинара Лаборатории термостойких термопластов Федерального государственного бюджетного учреждения науки «Институт синтетических полимерных материалов им. Н.С. Ениколопова Российской академии наук (протокол № 2 от 29 апреля 2025г.). Отзыв принят открытым голосованием – единогласно.

Заведующий лабораторией №3 (термостойких термопластов) ФГБУН «ИСПМ РАН», д.х.н., профессор

Вход. № 05-8431 «19 » 05 2015 г. подпись Подпись Кузпецьва А-А.
ЗАВЕРЯЮ
Учёный секреторь ИСПМ РАН
к.х.н. Е.В. Гетманова
« 14 » Мал 2025

А.А. Кузнецов