На правах рукописи

uppy

КАЗАНЦЕВА ИРИНА СЕРГЕЕВНА

Влияние комплексов цинка и кадмия с нитрило-*трис*-метиленфосфоновой кислотой на формирование оксидно-гидроксидных слоёв на поверхности стали в нейтральных водных средах, содержащих галогенид-ионы

1.4.4. Физическая химия

АВТОРЕФЕРАТ диссертации на соискание учёной степени кандидата химических наук

Казань – 2025

Работа выполнена в Федеральном государственном бюджетном учреждении науки «Удмуртский федеральный исследовательский центр Уральского отделения Российской академии наук»

Научный руководитель:	доктор химических наук, Чаусов Федор Федорович					
Официальные оппоненты:	Андреев Николай Нико		Николаевич	н , доктор		
	химических	к наук, Феде	еральное госуд	арственное		
	бюджетное	учрежде	ние науки	Институт		
	физической	й химии	и электрох	имии им.		
	А.Н. Фрум	кина Росси	ийской акаде	мии наук,		
	лаборатори	я окислени	я и пассиваци	и металлов		
	и сплавон	з, главный	й научный	сотрудник,		
	заведующи	й лаборатор	ией;			
	T 0	м г		1		

Кочур Андрей Григорьевич, доктор физикоматематических наук, профессор, федеральное государственное бюджетное образовательное учреждение высшего образования «Ростовский государственный университет путей сообщения», кафедра физики, заведующий кафедрой.

Ведущая организация: федеральное государственное бюджетное образовательное учреждение высшего образования «Вятский государственный университет», г. Киров.

Защита состоится « 21 » октября 2025 г. в 14⁰⁰ часов на заседании диссертационного совета 24.2.312.01, созданного на базе федерального государственного бюджетного образовательного учреждения высшего образования «Казанский национальный исследовательский технологический университет» по адресу: 420015, г. Казань, ул. Карла Маркса, 68, зал заседаний ученого совета (А-330).

С диссертацией можно ознакомиться в библиотеке ФГБОУ ВО «КНИТУ» и на сайте https://www.kstu.ru/servlet/contentblob?id=551594.

Автореферат разослан «___» ____ 2025 г.

Ученый секретарь диссертационного совета 24.2.312.01, кандидат химических наук, доцент

Николаева Екатерина Валерьевна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы

Основным конструкционным материалом современности является сталь и другие сплавы на основе железа. Ежегодные потери металлов и сплавов от коррозии составляют 10-15% всей массы эксплуатируемых металлоконструкций. Один из основных методов защиты металлов и сплавов и повышения долговечности металлоконструкций – применение ингибиторов коррозии (ИК). В то время как ингибиторы коррозии для кислых сред (pH < 4), действие которых основано на адсорбции и перезарядке двойного электрического слоя, разработаны достаточно хорошо, проблема защиты стали от коррозии в нейтральных средах (отнесение к нейтральным условно; обычно принимается $4 \le pH \le 10$), где основным защитным является формирование оксидно-гидроксидных фактором слоёв $(\mathbf{0}\mathbf{\Gamma}\mathbf{C})$ на поверхности стали, остаётся актуальной проблемой.

Установление физико-химических основ влияния ингибиторов на формирование ОГС является фундаментальной научной базой для разработки эффективных методов защиты металлов и металлических конструкций от коррозии.

Один из классов ИК, показавший свою эффективность в нейтральных средах – органофосфоновые кислоты и их комплексы с металлами. Несмотря на большой объём исследований этого класса ингибиторов, механизм их действия, состав и строение формируемых в их присутствии пассивных ОГС на поверхности металлов, а также закономерности формирования таких слоёв в нейтральных водных растворах недостаточно изучены. Природные и промышленные водные среды (например, в отопления. охлаждения) часто содержат агрессивные системах примеси. оказывающие существенное влияние на формирование, состав и строение ОГС. Состав и строение ОГС, закономерности их формирования и разрушения в водных средах, содержащих ионы Cl⁻, Br⁻, I⁻ и F⁻ (**Hlg**⁻), в комплексе с влиянием этих ионов на электрохимическое поведение металлов, изучены недостаточно.

Таким образом, исследование фундаментальных физико-химических закономерностей влияния металлофосфонатных ИК на процессы формирования ОГС на поверхности стали в нейтральных водных средах, содержащих ионы Hlg⁻, является актуальной проблемой в области защиты металлов.

Степень разработанности темы

Вопросам изучения состава и строения ОГС, формирующихся на поверхности металлов нейтральных водных средах, посвящено большое В количество исследований. Попытки установить фазовый состав и послойную структуру таких слоёв не привели к согласующимся результатам. Основная причина этого - малая толщина ОГС (единицы и десятки нанометров), препятствующая использованию дифракционных методов фазового анализа. Показано, что основными компонентами этих слоёв являются оксиды, гидроксиды и оксогидроксиды железа. Влияние ионов Cl⁻ на процессы формирования и разрушения поверхностных слоёв, их состав и строение, а также на электрохимическое поведение различных сталей и сплавов в водных средах является наиболее изученным. Степень проработанности проблемы применительно к ионам Br⁻, I⁻ и F⁻ значительно меньше, а результаты носят противоречивый характер.

Eщë меньше информации толщине ΟΓC, 0 составе, строении И формирующихся на поверхности стали в присутствии металлофосфонатных ИК. Описанные литературных источниках исследования проводились В не С индивидуальными комплексами органофосфоновых кислот с металлами, а с неконтролируемой по составу смесью продуктов взаимодействия органофосфоновых кислот и ионов металлов, вводимых в водную среду. Стехиометрия реакций взаимодействия металлофосфонатных ИК с ионами Fe^{2+} , состав и строение продуктов этих реакций также не были установлены. В ряде публикаций имеются сведения об элементном составе сформированных оксидно-гидроксидных слоёв, но распределение в них продуктов взаимодействия коррозионной среды и ИК с ионами Fe^{2+} остались неизученными.

Объекты исследования

Оксидно-гидроксидные слои, сформированные на поверхности образцов низкоуглеродистой стали Ст3кп в нейтральных водных средах, содержащих ионы Hlg^- в отсутствие и в присутствии металлохелатных комплексов тридекагидрата нитрило-*трис*-метиленфосфонатоцинката тетранатрия $Na_4[Zn\{N(CH_2PO_3)_3\}]\cdot 13H_2O$ (**ZnNTP**) и гептагидрата нитрило-*трис*-метиленфосфонатоаквакадмата тетранатрия $Na_4[Cd(H_2O)\{N(CH_2PO_3)_3\}]\cdot 7H_2O$ (**CdNTP**).

Предмет исследования

Влияние хелатных комплексов ZnNTP и CdNTP с индивидуальноопределённой структурой и ионов Hlg⁻ на закономерности формирования ОГС на поверхности стали Ст3кп в нейтральных водных средах.

Цель и задачи работы

Целью работы является установление физико-химических закономерностей формирования оксидно-гидроксидных слоёв на поверхности низкоуглеродистой стали при её коррозии в нейтральных водных средах, содержащих галогенид-ионы, в присутствии металлохелатных комплексов тридекагидрата нитрило-трис-_ метиленфосфонатоцинката $Na_4[Zn{N(CH_2PO_3)_3}]$ ·13H₂O тетранатрия или нитрило-*трис*-метиленфосфонатоаквакадмата гептагидрата тетранатрия $Na_{4}[Cd(H_{2}O)\{N(CH_{2}PO_{3})_{3}\}]\cdot 7H_{2}O.$

В соответствии с целью были поставлены и решены следующие задачи.

1. Исследовать влияние ионов Hlg⁻ на формирование ОГС на электрохимически неоднородной поверхности стали Ст3кп и на её электрохимическое поведение в нейтральных водных средах.

2. Изучить влияние комплексов ZnNTP и CdNTP на формирование и состав ОГС на поверхности стали и кинетику процесса её анодного растворения в нейтральных водных средах, в том числе в присутствии галогенид-ионов.

3. Разработать методику количественного определения ZnNTP и CdNTP и продуктов их взаимодействия с ионами Fe^{2+} – гетерометаллических полиядерных комплексов $[Fe_{1/2}Zn_{1/2}(H_2O)_3\mu-H_4\{N(CH_2PO_3)_3\}]_n$ (FeZnNTP) и $[Fe_{7/8}Cd_{1/8}(H_2O)_3H_4N(CH_2PO_3)_3]_n$ (FeCdNTP) – при их совместном присутствии, определения степени конверсии и пространственной локализации накопления продуктов этих реакций в наноразмерных ОГС на основе метода рентгеновской фотоэлектронной спектроскопии (РФЭС) с послойным ионным травлением.

4. Установить закономерности формирования ОГС в присутствии ZnNTP и CdNTP и ионов Hlg⁻, включая диффузионный перенос ионов ингибиторов, Fe²⁺ и Hlg⁻ в ОГС, реакции ингибиторов с ионами железа, сопутствующие процессы, локализацию их протекания и накопления их продуктов.

Научная новизна

1. Изучены закономерности формирования и состав ОГС на поверхности стали в нейтральных водных средах, содержащих комплексы ZnNTP и CdNTP с индивидуально-определенными структурами, процессы диффузионного переноса этих комплексов в ОГС, пространственная локализация процессов взаимодействия ZnNTP и CdNTP с ионами Fe²⁺ и накопления продуктов этих реакций.

2. Исследовано влияние ионов Hlg⁻ на процессы формирования и состав ОГС, образующихся на поверхности стали в присутствии ZnNTP и CdNTP. Установлены закономерности диффузионного переноса галогенид-ионов в ОГС; изучено влияние галогенид-ионов на пространственную локализацию реакций взаимодействия ZnNTP и CdNTP с ионами Fe²⁺.

3. Определено влияние состава, толщины и проницаемости ОГС на кинетику анодного растворения стали в присутствии ZnNTP и CdNTP и ионов Hlg⁻.

4. Разработана методика сравнительного исследования ОГС на поверхности стали, сформированных в присутствии комплексов ZnNTP и CdNTP, методом РФЭС с послойным ионным травлением, с определением пространственной локализации процессов массопереноса, химических взаимодействий и накопления продуктов этих процессов.

Теоретическая и практическая значимость работы

Показано, что механизм ингибирующего действия металлохелатных ZnNTP и CdNTP основан на их взаимодействии с ионами Fe²⁺, образующимися при окислении стали в нейтральных водных средах, при их встречной диффузии в порах OГC. Этот процесс приводит к образованию труднорастворимых продуктов – FeZnNTP, Zn(OH)₂ и FeCdNTP, Cd(OH)₂, – которые кольматируют поры OГC и затрудняют диффузионный перенос продуктов коррозии и деполяризатора. Интенсивность реакции и пространственная локализация накопления её труднорастворимых продуктов определяются закономерностями диффузионного переноса исходных веществ, их реакционной способностью и стехиометрическими соотношениями.

Показано, что механизм формирования ОГС в присутствии ZnNTP и CdNTP отличается от обычной оксидной и солевой пассивации координационным характером химических связей Fe–O в соединениях FeZnNTP и FeCdNTP. Поэтому исследованное явление выделено автором диссертации в особый случай, для которого введён термин «координационная пассивация».

Разработана методика количественного определения ZnNTP и FeZnNTP, CdNTP и FeCdNTP при их совместном присутствии в ОГС с использованием РФЭС с послойным травлением ионами Ar⁺. Определены закономерности их накопления в наноразмерных ОГС на поверхности стали. Разработанная методика может быть использована для исследования закономерностей формирования защитных слоёв на поверхности металлов в различных условиях.

Результаты могут быть использованы как для разработки технологий защиты стальных конструкций и сооружений от коррозии металлохелатными ИК в нейтральных водных средах с примесями ионов Hlg⁻, так и для исследования механизма и эффективности действия других ингибиторов коррозии.

Полученные сведения могут быть полезны при подготовке учебных пособий и преподавании дисциплин «Физическая химия», «Спектроскопические методы исследования материалов, веществ и изделий».

Методология и методы исследования

В работе использованы рентгеноструктурный анализ монокристаллов, рентгеновская фотоэлектронная спектроскопия, в том числе с послойным ионным травлением, хроновольтамперометрический метод, сканирующая электронная микроскопия с микрозондовым анализом, титриметрический анализ. В совокупности эти методы позволили определить состав и структуру исследуемых соединений и установить закономерности формирования ОГС.

Положения, выносимые на защиту

1. Защитные свойства комплексов ZnNTP и CdNTP обусловлены их взаимодействием с ионами Fe^{2+} в условиях встречной диффузии в порах OFC с образованием труднорастворимых продуктов – гетерометаллических полиядерных комплексов FeZnNTP и FeCdNTP, а также гидроксидов цинка и кадмия, которые кольматируют поры и тем самым понижают диффузионную проницаемость OFC. Толщина и состав формирующихся OFC, пространственная локализация в них кольматирующих осадков зависят от стехиометрии реакций ZnNTP и CdNTP с ионами Fe²⁺ и протекания конкурирующих процессов, в том числе с участием ионов Hlg⁻.

2. Комплексы ZnNTP и CdNTP взаимодействуют с ионами Fe^{2+} , а труднорастворимые продукты этих реакций – накапливаются, в первую очередь, в местах наиболее интенсивной продукции ионов Fe^{2+} , т.е. питтингов, язв и т.п. Это обусловливает формирование неоднородного ОГС, неоднородность которого компенсирует электрохимическую неоднородность поверхности стали.

3. В продуктах координационной пассивации FeZnNTP и FeCdNTP атомы Fe(II) образуют прочные координационные связи Fe–O с лигандом и не участвуют в диффузионном переносе. Комплексы FeZnNTP и FeCdNTP являются наименее реакционноспособной частью поверхностного слоя, они сохраняются даже при разрушение ОГС в условиях транспассивного перехода.

4. ОГС, сформированные в присутствии ZnNTP, отличаются меньшей толщиной, большей сплошностью и лучшими защитными свойствами, чем ОГС, сформированные в присутствии CdNTP.

Достоверность результатов обеспечивается

1. Использованием математической и статистической обработки результатов многочисленных экспериментов, проведением исследований взаимодополняющими методами и согласованием полученных результатов.

2. Использованием экспериментальных техник, отвечающих современному научно-техническому уровню, тщательно проверенных и апробированных методик исходных веществ И проведения эксперимента, аттестацией подготовки использованных образцов, обоснованным выбором методов калибровки спектральных приборов, проверкой воспроизводимости результатов.

Соответствие паспорту специальности 1.4.4. Физическая химия

Работа соответствует паспорту специальности 1.4.4. Физическая химия по следующим пунктам:

 п. 6. Химические превращения, потоки массы, энергии и пространственных и временных структур в неравновесных системах;

– п. 7. Макрокинетика, механизмы сложных химических процессов, физикохимическая гидродинамика, растворение и кристаллизация; – п. 9. Связь реакционной способности реагентов с их строением и условиями протекания химической реакции.

Апробация работы

Материалы работы докладывались и обсуждались на следующих конференциях: IX Международная конференция «Кристаллизация: компьютерные модели, эксперимент, технологии» (Ижевск, 2022); XVI Международная конференция «Мессбауэровская спектроскопия и ее применения» (Екатеринбург, 2022); XIX Международная конференция «Спектроскопия координационных соединений» (Туапсе, 2022); XV Международная школа-конференция молодых учёных «КоМУ-2023» (Ижевск, 2023); I Всероссийская научная конференция с международным участием «Теоретические и прикладные аспекты электрохимических процессов и защита от коррозии» (Казань, 2023).

Публикации

Представленные в диссертации результаты опубликованы в 12 статьях в журналах, входящих в Перечень ведущих рецензируемых научных журналов и изданий, рекомендованных ВАК Минобрнауки России, и 2 тезисах докладов.

Структура и объём работы

Диссертация состоит из введения, пяти глав, заключения, списка литературы из 228 наименований и изложена на 167 страницах, включая 6 таблиц и 101 рисунок.

Личный вклад автора

Автор диссертации лично выполнил:

- синтез, выделение монокристаллов хелатных комплексов ZnNTP и CdNTP и установление их элементного состава, отработку методики подготовки стальных позволяющей добиться воспроизводимости вольтамперометрических образцов. экспериментов; подготовку сред для проведения вольтамперометрических экспериментов, проведение вольтамперометрических экспериментов и подготовку образцов для исследований ОГС методами РФЭС и сканирующей электронной микроскопии (СЭМ); обработку и интерпретацию результатов элементных анализов и электрохимических исследований, интерпретацию результатов РФЭС, СЭМ, элементного микроанализа; анализ и обобщение полученных в работе результатов, формулирование новых теоретических положений по результатам работы.

Благодарности

Автор от души благодарит:

– д.ф.-м.н., проф. В. И. Ладьянова за помощь в аттестации образцов стали;

- к.ф.-м.н. Н. В. Ломову, к.ф.-м.н. В. Л. Воробьёва, м. н. с. Н. Ю. Исупова за помощь в получении и интерпретации спектров РФЭС;

- к.ф.-м.н. И. К. Аверкиева за помощь в проведении СЭМ;

– д.ф.-м.н., проф. Н. В. Сомова (ННГУ им. Н. И. Лобачевского) за проведение рентгеноструктурных экспериментов и решение кристаллических структур по полученным данным;

– администрацию УдмФИЦ УрО РАН (директор – д.ф.-м.н., проф. М. Ю. Альес), своих коллег и научного руководителя д.х.н. Ф. Ф. Чаусова за помощь в организации исследований, обсуждение и критику результатов.

В диссертации использованы результаты работ, проведённых при поддержке Министерства науки и высшего образования Российской Федерации (проекты 124021900017-1 и 1024032100142-6).

Основное содержание работы

Введение включает оценку актуальности темы исследования и степени её разработанности, формулировки цели и задач работы, характеристику её научной новизны, теоретической и практической значимости. Представлены положения, выносимые на защиту, приведены сведения о личном вкладе автора, публикациях и апробации результатов работы.

Первая глава посвящена обзору литературы по теме исследования. Проанализированы литературные данные о взаимодействии металлов с нейтральными водными средами, о теориях пассивности, строении и структуре ОГС, методах их исследования. Особое внимание уделено раскрытию роли галогенид-ионов в процессах разрушения ОГС, оценке коррозионной активности галогенид-ионов, проведены анализ и обобщение данных о составе и строении ОГС, формирующихся в присутствии ионов Hlg⁻.

Представлен краткий обзор ИК для нейтральных водных сред, в частности производных фосфоновых кислот и их комплексов с металлами (преимущественно – системы Zn²⁺–органофосфоновые кислоты), исследований механизма ингибирующего действия этих соединений, состава и строения ОГС, формирующихся с участием данных веществ.

В результате анализа литературы сформулирована цель работы и поставлены задачи, решение которых необходимо для достижения цели.

Вторая глава содержит описание использованных образцов, методов их получения и исследования.

Выбранные для исследования комплексы ZnNTP и CdNTP синтезированы и выделены в виде монокристаллов, определён их элементный состав; молекулярная и кристаллическая структура этих соединений установлена методом монокристального рентгеноструктурного анализа (PCA) на автоматизированных четырёхкружных дифрактометрах Rigaku XtaLAB MM003 P200K и Oxford Diffraction Gemini S.

Для исследований выбрали сталь обыкновенного качества (с заведомо электрохимически неоднородной поверхностью) Ст3кп по ГОСТ 380-2005, поскольку ожидали, что из-за электрохимической неоднородности её поверхности эффекты пространственной локализации продуктов реакций проявятся наиболее ярко.

Как среда для испытаний, был использован боратно-борнокислый буферный раствор (ББР) с pH = 7.4. Хроновольтамперометрические эксперименты проводили с использованием стандартного автоматизированного потенциостата И трёхэлектродной электрохимической ячейки, включаюшей насышенный хлоридсеребряный электрод сравнения (ХСЭ) ЭСр-10101 и вспомогательный платиновый электрод ЭПВ-1-100. Все потенциалы Е в работе даны в шкале ХСЭ $(E^{0}_{XC2} = 0.202 \pm 0.003 \text{ B/HB}$ при 25 °C). Измерения проводили в интервале E = (-1.0) - 1.5 В со скоростью развертки 2 мВ/с. Погрешность измерения потенциала ± 0.01 В, плотности тока ± 0.01 А/м².

Для формирования ОГС образец стали поляризовали в коррозионной среде заданного состава при заданном значении *E* в течение 10 мин., затем помещали в среду диэтилового эфира; образец, смоченный эфиром, быстро устанавливали в рабочую камеру прибора и немедленно вакуумировали её до 10⁻⁵–10⁻³ Па, чтобы предупредить контакт поверхности образца и ОГС с воздухом.

Спектры РФЭС получали на рентгеновском фотоэлектронном спектрометре ЭМС-3 (УдмФИЦ УрО РАН) с магнитной фокусировкой электронов при возбуждении Al-K_{α} излучением (hv = 1486.6 эВ) с температурным воздействием на образец. Для получения спектров РФЭС с послойным ионным травлением поверхности использовали рентгеновский фотоэлектронный спектрометр ЭС-2401 (AO «ЭЗАН») с возбуждением Mg-K_{α} излучением (hv = 1253.6 эВ).

Предварительная отработка методики на индивидуальных образцах соединений ZnNTP, CdNTP, FeZnNTP и FeCdNTP показала, что при травлении ионами Ar⁺ с энергией 1 кэВ сохраняется характерная для исходных соединений структура спектров, позволяющая идентифицировать эти соединения.

Математическую обработку результатов РФЭС (определение погрешностей измерений, вычитание фона по Ширли и деконволюция сложных спектров) проводили в программном пакете Fityk 0.9.8. Абсолютная погрешность определения положения пика составила ± 0.15 эВ. Относительная погрешность определения интенсивности пика $\delta I = \Delta I/I$ для всех выполненных измерений составила менее $\pm 5\%$.

Микроскопическое исследование ОГС проводили с использованием сканирующего электронного микроскопа Thermo Fisher Scientific Quattro S (США) с приставкой для энергодисперсионного микроанализа на основе спектрометра EDAX «Octane Elect Plus EDS System» (США). Относительная погрешность определения концентраций элементов – 2–5%.

В **третьей главе** описаны состав и строение ОГС, формирующихся на поверхности стальных образцов в ББР (pH = 7.4), в том числе с добавками ионов Hlg⁻, дана оценка электрохимического поведения стали в этих средах.

ОГС формируется в условиях встречной диффузии ионов Fe²⁺ и ионов OH⁻ и O²⁻; он может быть условно разделён на слой с мольным соотношением O:Fe \geq 1, состоящий, главным образом, из оксидов и гидроксидов железа, и подстилающий слой субоксида железа (твёрдого раствора кислорода в α -Fe) с мольным соотношением O:Fe < 1. Глубина, на которой достигается мольное соотношение O:Fe, равное 1, принимали за условную толщину ОГС *d*.

Вольтамперограмма, полученная в ББР (pH = 7.4) без добавок, имеет типичный вид, характерный для пассивирующейся системы (рис. 1). При этом плотность тока анодного растворения металла на участке *CE* остаётся сравнительно высокой (0.5– 1.0 A/m^2), что обусловлено значительной электрохимической неоднородностью поверхности стали. Поэтому в дальнейшем данный участок рассматривается как условно пассивная область (УПО), в которой устанавливается динамическое равновесие между процессами окисления металла, формирования ОГС и его растворения.

Основными компонентами ОГС, сформированных в ББР без добавок в УПО, являются оксиды и гидроксиды железа. Имеется вклад неокисленного железа, что свидетельствует о небольшой толщине или даже разрывах ОГС. В малом количестве присутствуют ионы $H_4BO_4^{-}$ или $B_4O_7^{2-}$ (рис. 2, кривая *a*). Отжиг при 22% (рис. 2, кривая *б*) приводит к образованию магнетита Fe₃O₄.

В ОГС, сформированном в ББР без добавок, с ростом глубины травления возрастает доля Fe и снижается доля O (рис. 3).

Рисунок 1 – Вольтамперограмма образца стали Ст3кп в ББР (pH = 7.4), наложенная на упрощённую диаграмму Пурбэ для системы Fe–H₂O

Рисунок 2 – Фрагменты спектров РФЭС образца после поляризации при E = 0.5 В

при *E* = 0.5 В

Условная толщина ОГС $d \approx 5$ нм. В оксидной части поверхностного слоя адсорбция примесей из буферного раствора идёт параллельно с формированием ОГС, в подстилающем слое субоксида адсорбция примесных элементов обусловлена их диффузией из вышележащих слоёв в глубину подложки.

Ионы Hlg⁻ разрушают ОГС, повышают его пористость и диффузионную проницаемость; основные характеристики этих слоёв приведены в табл. 1.

	1
Габлина	
таотна	•••

Концентрация	Плотность тока, А/м ²		IIIumuua	Толщина	Концентрация ионов Hlg ⁻ в ОГС, ат.%		
ионов Hlg ⁻ , ммоль/дм ³	Крити- ческая	В УПО	Ширина УПО, В	ОГС <i>d</i> , нм	на границе с водной средой	на границе с металлом	
Без добавок	1.43	0.55	1.2	5		_	
1.4 Cl ⁻	1.45	0.83	~0.0	3	0.6	0.1	
1.4 Br ⁻	1.60	0.99	~0.0	> 30	Ниже предела		
					обнару	/жения	
1.4 I ⁻	1.37	0.80	~0.0	12	Следовые количества		
1.4 F ⁻	1.50	0.90	1.2	27-30	0.2	7.1	

Свойства и состав ОГС, сформированных в ББР с добавками ионов Hlg⁻

Присутствие ионов Cl⁻ облегчает начальный этап формирования OFC, но ионы Cl⁻ проникают вплоть до границы с металлом и разрушают OFC как со стороны электролита, так и со стороны металла. В присутствии ионов Br⁻ наблюдаются интенсивные процессы окисления поверхности стали. Коррозионная агрессивность Br⁻, вероятно, обусловлена высокой растворимостью комплексов [FeBr_n]. Ионы I⁻, по-видимому, адсорбируются на поверхности неокисленного железа, препятствуя формированию OFC. Иод спектроскопически обнаруживается в виде ионов I⁻ и I₃⁻, образующихся в результате реакций

$$3I^{-} = I_{3}^{-} + 2e^{-}, \tag{1}$$

$$3I^{-} + 2Fe^{III}O(OH) = 2Fe^{II}O + I_{3}^{-} + 2OH^{-}.$$
 (2)

В ББР с добавкой ионов F⁻ формируется сплошной толстый ОГС. Ионы F⁻, с одной стороны, образуют малорастворимый FeF₂, который кольматирует поры ОГС (солевая пассивация), снижая его диффузионную проницаемость. С другой стороны, ионы F⁻ являются депассиваторами, образуя растворимые комплексы [Fe^{III}F_n]⁽³⁻ⁿ⁾. На профилях элементного состава ОГС, сформированных в ББР с добавлением F⁻, на глубинах 5–15 нм имеются участки, где концентрации Fe и O практически не изменяются (рис. 4).

В четвертой главе рассмотрено влияние хелатного комплекса ZnNTP на формирование ОГС на поверхности стали в ББР, в том числе с добавками Hlg⁻. В порах ОГС в условиях встречной диффузии ионов Fe^{2+} и $[Zn{N(CH_2PO_3)_3}]^{4-}$ протекает реакция (3), приводящая к образованию труднорастворимых соединений – FeZnNTP и Zn(OH)₂, кольматирующих поры ОГС:

$${}^{1}/_{2}nFe^{2+} + n[Zn\{N(CH_{2}PO_{3})_{3}\}]^{4-} + 7nH_{2}O =$$

= [Fe_{1/2}Zn_{1/2}(H_{2}O)_{3}\mu-H_{4}\{N(CH_{2}PO_{3})_{3}\}]_{n} + {}^{1}/_{2}nZn(OH)_{2} + 3nOH^{-}. (3)

Это приводит к снижению плотности тока анодного растворения металла *i* по сравнению с фоновым раствором (рис. 5). Оптимальная концентрация ZnNTP – 0.5 г/дм^3 . Величина потенциала транспассивности $E_{\rm tp}$ незначительно уменьшается с ростом концентрации ZnNTP, по-видимому, из-за образования свободного лиганда, связывающего ионы Fe²⁺ в растворимые комплексы.

Рисунок 4 – Профили элементного состава поверхностных слоёв образцов стали, поляризованных в ББР (pH = 7.4) с добавкой 1.4 ммоль/дм³ ионов F⁻ при различных потенциалах

Рисунок 5 – Вольтамперограммы образцов стали в ББР с добавлением различных концентраций ZnNTP; цифры на кривых обозначают концентрацию ZnNTP C_{inh} , г/дм³ (*a*). Зависимости критической плотности тока анодного растворения металла i_c (1), потенциала транспассивности E_{tp} (2) и потенциала разомкнутой цепи E_{oc} (3) от C_{inh} (δ)

О распределении в ОГС исходного комплекса ZnNTP и продукта реакции (3) можно судить на основании спектров P2*p*-электронов (рис. 6). По мере увеличения глубины возрастает степень конверсии исходного ZnNTP ($E_B = 132.5$ эВ) в FeZnNTP ($E_B = 133.4$ и 134.8 эВ); на глубине 15 нм реакция (3) практически завершена. Концентрация продукта реакции (FeZnNTP) максимальна в поверхностных слоях (1–5 нм). ОГС характеризуется сплошностью, малой диффузионной проницаемостью, удовлетворительными защитными свойствами, которые обусловлены, главным образом, наличием в его составе FeZnNTP.

В ББР, содержащем ионы Cl⁻ (рис. 7), ZnNTP по мере повышения его концентрации действует в двух направлениях: понижает величины критической плотности тока i_c и плотности тока в УПО i_p и повышает E_{tp} . Оптимальная концентрация ZnNTP в ББР, содержащем 1.4 ммоль/дм³ ионов Cl⁻, составляет 1 г/дм³. Избыток ZnNTP (более 2 г/дм³) является допустимым, поскольку не приводит к существенному росту *i*.

Рисунок 6 – Спектры Р2*p*-электронов, измеренные при послойном травлении поверхности образца стали, поляризованного в ББР с добавкой 5 г/дм³ ZnNTP при E = 0.5 B.

Цифры у кривых соответствуют глубине травления в нанометрах

Рисунок 7 – Вольтамперограммы образцов стали в ББР с добавкой 1.4 ммоль/дм³ ионов Cl⁻ и ZnNTP; цифры на кривых показывают концентрацию ZnNTP C_{inh}, г/дм³ (*a*).

Зависимости критической плотности тока $i_c(1)$, потенциала транспассивности $E_{tp}(2)$ и потенциала разомкнутой цепи $E_{oc}(3)$ от $C_{inh}(\delta)$

Наиболее устойчивой частью ОГС является FeZnNTP, который не разрушается ионами Hlg⁻ и сохраняется при транспассивном переходе.

Аналогичные закономерности в электрохимическом поведении стали наблюдаются в ББР с добавками ZnNTP и ионов Br⁻ и I⁻. В ББР, содержащем ионы F⁻, с ростом концентрации ZnNTP наблюдается незначительное снижение E_{tp} , которое,

11

вероятно, обусловлено возрастанием дефектности ОГС в результате окисления FeF₂. Превышение оптимальной концентрации ZnNTP (1 г/дм³) не приводит к росту i_p .

Как ингибитор, ZnNTP действует избирательно – в первую очередь реагирует с ионами Fe²⁺ на участках металла, где наблюдается повышенная эмиссия ионов Fe²⁺, т.е. в области питтингов, язв и т.п. (рис. 8). Это обусловливает формирование неоднородного ОГС, неоднородность которого компенсирует электрохимическую неоднородность поверхности стали. По-видимому, именно этот фактор выравнивания скорости коррозии является важнейшим для продления срока службы стальных конструкций.

Рисунок 8 – Микрофотографии поверхности образцов стали, поляризованных в ББР с добавкой 1.4 ммоль/дм³ ионов Cl⁻ и 5 г/дм³ ZnNTP при потенциале E = 0.7 B. Увеличение 50×

Свойства ОГС, полученных в присутствии ZnNTP и Hlg⁻, даны в табл. 2.

Таблица 2.

Свойства и состав ОГС	, coor	мированных в ББІ	Р с добавками	и ZnNTP и ионов Hlg⁻	1
	, , ,		, ,	()	

Концентрация	Опти- мальная	Степень	Плотн тока, А	Плотность гока, А/м ² Ш		Толщина	Концентрация ионов Hlg ⁻ в ОГС, ат. % ²	
ионов Hlg ⁻ , ммоль/дм ³	величина <i>C</i> _{inh} , г/дм ³	защиты <i>Z</i> , % ¹	Крити- ческая	В УПО	УПО, В	ОГС <i>d</i> , нм ²	на границе с водной средой	на границе с металлом
Без Hlg ⁻	0.5	52.4	0.68	0.45	1.60	18		
1.4 Cl ⁻	1.0	67.6	0.47	0.40	0.85	4	0.2	0.1
$1.4 \mathrm{~Br}^{-}$	1.0	50.0	0.80	0.76	0.50	7	Ниже п	предела
							обнару	жения
1.4 I ⁻	1.0	31.4	0.94	0.90	0.55	4	0.2	0.1
$1.4 \; { m F}^-$	1.0	36.7	0.95	0.89	1.50	18–30	0.3	6.3

¹⁾ *Z* – степень защиты определяли по формуле $Z = [(i_{c,\phi} - i_{c,ing})/i_{c,\phi}] \times 100\%$, где $i_{c,\phi}$ и $i_{c,ing}$ – значения критической плотности тока, соответственно, в фоновом растворе и в растворе с оптимальной концентрацией ингибитора, A/M^2 . ²⁾ при $C_{inb} = 5 \text{ г/дм}^3$

Процессы интенсивного окисления стали в присутствии ионов Br⁻ подавляются введением ZnNTP: на глубинах 5–10 нм наблюдается резкое изменение концентраций

О и Fe (рис. 9, *a*): по-видимому, поверхностная часть ОГС, содержащая наибольшее количество комплекса FeZnNTP (рис. 9, δ), из-за наиболее интенсивной кольматации обладает наибольшим диффузионным сопротивлением и препятствует процессам массопереноса в ОГС.

глубине травления в нанометрах

Рисунок 10 – Спектры РФЭС Р2*р*-электронов при послойном травлении образца после поляризации при *E* = −0.1 В в ББР с добавлением 1.4 ммоль/дм³ ионов Ги 5 г/дм³ ZnNTP

В ББР, содержащем ZnNTP и Cl⁻, Br⁻ или Г, формируются тонкие OFC с наибольшей долей FeZnNTP на глубинах 1–5 нм; степень конверсии ZnNTP в FeZnNTP возрастает от поверхности к границе OFC/металл. В ББР, содержащем ионы Г и ZnNTP, характерна высокая степень конверсии исходного ZnNTP в комплекс FeZnNTP уже в поверхностных слоях OFC – на глубине 5 нм реакция (3) почти завершена (рис. 10), что можно связать с избытком ионов Fe²⁺.

В ББР с добавкой ионов F⁻ и ZnNTP, формируются наиболее толстые, сплошные OГC, которые содержат малорастворимые компоненты – FeF₂, FeZnNTP, Zn(OH)₂, – существенно повышающие её защитные свойства. С ростом *E* интенсифицируются процессы окисления Fe²⁺ до Fe³⁺, приводящие к разрушению OГС (в том числе инкрустаций FeF₂) ввиду образования растворимых комплексов $[Fe^{III}F_n]^{(3-n)}$, преимущественно, в его поверхностной части (0–5 нм). Ввиду протекания конкурентного процесса образования FeF₂ процесс (3) преобладает в области 10–30 нм ОГС (рис. 11). Степень конверсии ZnNTP в комплекс FeZnNTP, а также доля FeZnNTP максимальны на глубинах более 10 нм.

В пятой главе описано влияние CdNTP на формирование ОГС на поверхности стали. Антикоррозионное действие CdNTP обусловлено протеканием реакции

$${}^{7/_{8}n}Fe^{2+} + n[Cd(H_{2}O)N(CH_{2}PO_{3})_{3}]^{4-} + 6nH_{2}O =$$

= [Fe_{7/8}Cd_{1/8}(H_{2}O)_{3}\mu-H_{4}N(CH_{2}PO_{3})_{3}]_{n} + {}^{7/_{8}n}Cd(OH)_{2} + {}^{9/_{4}n}OH^{-}, (4)

продуктами которой являются труднорастворимые соединения – FeCdNTP и Cd(OH)₂. Значительная доля Cd(OH)₂ в ОГС (из 1 моль CdNTP образуется 7/8 моль Cd(OH)₂), по-видимому, повышает дефектность ОГС.

Рисунок 11 – Спектры РФЭС Р2*р*-электронов, полученные при послойном травлении образца, поляризованного при *E* = –0.05 В в ББР с добавками 1.4 ммоль/дм³ ионов F⁻ и 5 г/дм³ ZnNTP. Цифры у спектрограмм соответствуют глубине травления в нанометрах

Рисунок 12 – Вольтамперограммы образцов стали в ББР с добавками CdNTP; цифры на кривых показывают концентрацию CdNTP C_{inh} , г/дм³ (*a*). Зависимости критической плотности тока i_c (1), потенциала транспассивности E_{tp} (2) и потенциала разомкнутой цепи E_{oc} (3) от C_{inh} (δ)

Характер вольтамперограмм, полученных в ББР с добавкой CdNTP, такой же, как в ББР с добавками ZnNTP (рис. 12). Оптимальная концентрация CdNTP – 0.1 г/дм³ – приблизительно в 4 раза ниже, чем для ZnNTP, и соотносится со стехиометрией реакций (3) и (4). Однако, в отличие от ZnNTP, превышение оптимальной концентрации CdNTP приводит к резкому росту i_c , что, по-видимому, обусловлено рыхлостью ОГС. В ББР с добавкой 1.4 ммоль/дм³ ионов Cl⁻ CdNTP неэффективен как ингибитор коррозии. В ББР, содержащем 1.4 ммоль/дм³ ионов F⁻, Br⁻ или Г, оптимальная концентрация CdNTP составляет 0.2–0.5 г/дм³; её превышение приводит к росту *i*, а для ББР с добавками Br⁻ и I⁻ – к возрастанию E_{tp} .

В спектрах P2*p*-электронов, полученных при ионном травлении поверхности стали, поляризованной в ББР с добавками CdNTP, присутствуют составляющие с характерным для CdNTP максимумом интенсивности при $E_{\rm B} = 132.6$ эВ, и с максимумами при $E_{\rm B} = 133.6$ и 134.6 эВ, относящимися к FeCdNTP (рис. 13). Степень превращения CdNTP в FeCdNTP возрастает с глубиной ОГС, но оказывается неполной даже на 15 нм по причине дефицита ионов Fe²⁺ (1 моль CdNTP реагирует с 7/8 моль Fe²⁺). При этом FeCdNTP равномерно распределён по глубине ОГС.

В присутствии CdNTP и Hlg⁻ образуются ОГС с условной толщиной более 20 нм и значительной диффузионной проницаемостью (табл. 3). По данным РФЭС, в ББР с добавками Br⁻ и Г и CdNTP формируются ОГС, частично покрывающие поверхность стали. Закономерности распределения CdNTP и FeCdNTP в ОГС, сформированных в ББР с добавками CdNTP и ионов Cl⁻ и Br⁻, в основном, те же, что и в отсутствие ионов Hlg⁻. По аналогии с ZnNTP, присутствие I⁻ обеспечивает высокую степень конверсии CdNTP в FeCdNTP уже на поверхности ОГС.

Особенности строения ОГС, сформированных в присутствии CdNTP, способствуют проникновению во внутренние части ОГС ионов Br⁻ и I⁻, обладающих значительным ионным радиусом (табл. 3). Иод обнаруживается в виде ионов I⁻ ($E_{\rm B} = 619.2-619.3$ эВ), I₃⁻ с линейной ($E_{\rm B} = 624.5$ и 625.4 эВ) и I₃⁻ с угловой ($E_{\rm B} \approx 624.5$ эВ) конфигурациями. По-видимому, образование I₃⁻ с угловой структурой происходит на поверхности неокисленного железа, а в процессе диффузии в ОГС I₃⁻ с угловой конфигурацией изомеризуется в I₃⁻ с линейной конфигурацией (рис. 14, 15).

Таблица 3.

Концентрация	Опти- мальная величина $C_{inh}, г/дм^3$	Степень защиты <i>Z</i> , %	Плотность тока, А/м ²		Ширина	Толщина	Концентрация ионов Hlg ⁻ в ОГС, ат. % ¹	
ионов Hlg ⁻ , ммоль/дм ³			Крити- ческая	В УПО	УПО, В	ОГС <i>d</i> , нм ¹	на границе с водной средой	на границе с металлом
Без Hlg ⁻	0.1	45.5	0.78	0.47	1.55	20	-	
1.4 Cl ⁻	0.2	52.4	0.69	0.43	~0.00	>40	1.2	0.3
$1.4 \mathrm{Br}^-$	0.2	31.3	1.10	1.00	0.50	29	0.5	0.2
1.4 I ⁻	0.5	52.3	0.69	0.65	0.65	22	1.0	0.3
$1.4 \; {\rm F}^{-}$	0.2–0.5	40.0	0.90	0.88	1.55	22-24	0.4	5.6
1) ~ -1								

Свойства и состав ОГС, сформированных в ББР с добавками CdNTP и ионов Hlg⁻

15

¹⁾ при $C_{inh} = 1$ г/дм³

Рисунок 13 – Спектры РФЭС Р2*р*электронов при послойном травлении образца стали, поляризованного при *E* = 0.5 В в ББР с добавкой 1 г/дм³ CdNTP

Рисунок 14 – Спектры РФЭС ІЗ*d*_{5/2}электронов при послойном травлении образца стали, поляризованного при

E = -0.15 В в ББР с добавками 1.4 ммоль/дм³ Г и 1 г/дм³ СdNTP

> Рисунок 15 – Вероятная схема процесса формирования ОГС на поверхности стали в ББР с добавками Г и СdNTP

Рисунок 16 – Спектры РФЭС Р2*p*-электронов при послойном травлении (*a*) и профили элементного состава ОГС (δ) образца стали, поляризованного при *E* = -0.1 В в присутствии 1.4 ммоль/дм³ ионов F⁻ и 1 г/дм³ CdNTP. Цифры у спектрограмм соответствуют глубине травления в нанометрах

В ОГС, сформированном в присутствии ионов F⁻ и CdNTP при E = -0.1 B, наблюдается нехарактерная практически полная конверсия CdNTP в FeCdNTP (рис. 16, *a*). Вероятно, на глубинах 0–5 нм происходит формирование слоя с малой диффузионной проницаемостью, который препятствует процессам массопереноса в ОГС (рис. 16, *б*). При этом из возможных конкурентных процессов (солевая и координационная пассивации) в приоритете оказывается координационная пассивация.

ЗАКЛЮЧЕНИЕ

В результате исследований, проведённых автором в рамках представленной работы:

1. Установлены состав и строение ОГС, сформированного на поверхности низкоуглеродистой стали Ст3кп в нейтральных водных средах. ОГС формируется в условиях встречной диффузии ионов Fe^{2+} и ионов OH^- и O^{2-} . Каких-либо определённых фаз и слоёв в составе ОГС не обнаружено. Поверхностный слой может быть условно разделён на слой с мольным соотношением \mathfrak{D} : F,е состоящий, главным образом, из оксидов и гидроксидов железа, и подстилающий слой субоксида

железа FeO_{1-x} с мольным соотношением O:Fe < 1. Глубина, на которой достигается мольное соотношение O:Fe, равное 1, принимается за условную толщину OГC. Условная толщина OГC, образованного в ББР (pH = 7.4), составляет около 5 нм. Образование магнетитового слоя возможно после старения начального OГC.

2. Сравнительная коррозионная активность ионов Hlg⁻ на основании данных вольтамперометрических измерений, результатов РФЭС и СЭМ представлена следующим рядом: $Cl^- \approx Br^- > I^- >> F^-$. Основным фактором, определяющим депассивирующее действие ионов Hlg⁻, является растворимость соответствующих галогенидных комплексов железа и способность ионов Hlg⁻ проникать в ОГС.

3. Защитные свойства комплексов ZnNTP и CdNTP обусловлены протеканием, в условиях встречной диффузии в порах ОГС, реакций ионов ингибитора и Fe²⁺ с образованием труднорастворимых продуктов, кольматирующих поры ОГС и понижающих, тем самым, его диффузионную проницаемость. Атомы Fe(II) в комплексах FeZnNTP, FeCdNTP образуют прочные донорно-акцепторные связи.

4. Продукты реакции ZnNTP с ионами Fe^{2+} – комплекс FeZnNTP и Zn(OH)₂ – сосредоточены в основном в тонком внешнем слое (до 5 нм) ОГС, что определяет его низкую диффузионную проницаемость. При взаимодействии CdNTP с ионами Fe²⁺, наряду с FeCdNTP, образуется значительное количество Cd(OH)₂; формируется более пористый и диффузионно-проницаемый ОГС, чем в присутствии ZnNTP. Полная конверсия CdNTP в FeCdNTP не достигается из-за стехиометрического недостатка ионов Fe²⁺; при этом FeCdNTP распределён в ОГС более равномерно, чем при использовании ZnNTP.

5. Как ингибиторы коррозии ZnNTP и CdNTP действуют избирательно – в первую очередь ускоряют формирование ОГС на участках наиболее интенсивной продукции ионов Fe^{2+} , т.е. в области питтингов, язв и т.п., таким образом «залечивая» дефекты поверхности. Оптимальная концентрация CdNTP приблизительно в 4 раза ниже, чем ZnNTP, что соотносится со стехиометрией реакций образования комплексов FeCdNTP и FeZnNTP.

6. При совместном присутствии ZnNTP или CdNTP и ионов Hlg⁻ состав и строение образующихся ОГС, а также распределение исходных комплексов ZnNTP и CdNTP и продуктов реакций FeZnNTP и FeCdNTP в ОГС в основном близки к

свойствам ОГС, формирующихся в отсутствие ионов Hlg⁻. Ионы Hlg⁻ разрушают преимущественно оксидно-гидроксидную часть поверхностных слоёв, практически не реагируя с ZnNTP или CdNTP и продуктами их реакций FeZnNTP или FeCdNTP.

7. ОГС, сформированные в присутствии ZnNTP и ионов Hlg⁻, отличаются меньшей диффузионной проницаемостью и лучшими защитными свойствами, чем ОГС, образованные в тех же условиях, но в присутствии CdNTP.

8. В присутствии ионов Cl⁻, Br⁻ и I⁻ в ББР с добавкой ZnNTP формируются OГC меньшей толщины, чем в присутствии CdNTP. В присутствии ионов F⁻ и комплексов как ZnNTP, так и CdNTP формируются сплошные OГC значительной толщины. При одновременном присутствии в коррозионной среде F⁻ и ZnNTP в первую очередь протекают процессы солевой пассивации, F⁻ и CdNTP – координационной.

По итогам проведённых исследований представляются **перспективными следующие направления дальнейшего развития исследований** на основе фактического материала и выводов из данной работы.

1. Более детальное исследование поровой структуры формируемых поверхностных ОГС с определением их пористости, размерного распределения пор и влияния условий их формирования (состав коррозионной среды, наличие ИК, потенциал поверхности металла) на характеристики структуры порового формируемых ΟΓС. Это дало бы возможность получить пространства непосредственные данные о влиянии ИК на размеры и размерное распределение пор и на проницаемость ОГС.

2. Исследование строения полученных ОГС методом просвечивающей электронной микроскопии с атомным разрешением, что позволило бы выявить наличие наноразмерных структурных фрагментов тех или иных фаз и компонентов ОГС, продуктов взаимодействия ионов железа с ИК и других соединений.

3. Было бы актуально и практически полезно изучить коррозионноэлектрохимическое поведение образцов стали в агрессивных средах и влияние ингибиторов, используя более широкий арсенал экспериментальных электрохимических методов, включая метод поляризационных диаграмм, метод спектроскопии электрохимического импеданса и т.п. Представляют интерес и гравиметрические коррозионные испытания в модельных агрессивных средах, что позволило бы точнее соотнести сведения об электрохимическом поведении поверхности металла с непосредственными коррозионными потерями.

4. Логическим развитием проведённых исследований является разработка многофакторной математической модели поведения поверхности металла в многокомпонентных агрессивных средах в присутствии ИК, описывающей процессы диффузионного массопереноса через ОГС коррозионных агентов, продуктов деполяризатора, ионов-депассиваторов, ИК, а также протекание коррозии, химических реакций с участием всех этих веществ в объёме ОГС и на поверхности модель могла бы служить инструментом прогнозирования металла. Такая коррозионных потерь металла и подбора наиболее эффективных ИК в конкретных условиях эксплуатации.

Основные публикации автора по теме работы

1. Чаусов, Ф. Ф. Анализ молекулярной структуры и эксплуатационных свойств ингибиторов солеотложений и коррозии / Ф. Ф. Чаусов, **И. С. Казанцева**, Р. Г. Акашкина, С. П. Кузькина, Р. М. Закирова // Известия высших учебных заведений. Серия: Химия и химическая технология. – 2012. – Т. 55, № 2. – С. 81–85.

2. Chausov, F. F. Zinc and cadmium nitrilotris(methylenephosphonate)s: a comparative study of different coordination structures for corrosion inhibition of steels in neutral aqueous media / F. F. Chausov, **I. S. Kazantseva**, S. M. Reshetnikov, N. V. Lomova, A. N. Maratkanova, N. V. Somov // ChemistrySelect. – 2020. – V. 5, N_{P} 43. – P. 13711–13719.

3. Chausov, F. F. Linear organic/inorganic iron(II) coordination polymer based on nitrilo-tris(methylenephosphonic acid): spin crossover induced by Cd doping / F. F. Chausov, N. V. Lomova, L. V. Dobysheva, N. V. Somov, A. L. Ul'Yanov, A. N. Maratkanova, A. V. Kholzakov, **I. S. Kazantseva** // Journal of Solid State Chemistry. – 2020. – Vol. 286. – Article number 121324.

4. Суксин, Н. Е. Отходы гальванического производства как сырье для получения ингибитора коррозии нитрилотрисметиленфосфонатоцинката натрия / Н. Е. Суксин, М. А. Шумилова, **И. С. Казанцева** // Химическая физика и мезоскопия. – 2022. – Т. 24, № 1. – С. 104–110.

5. Чаусов, Ф. Ф. Термохимическое поведение кристаллических медноцинковых комплексов нитрило-*трис*-метиленфосфоновой кислоты / Ф. Ф. Чаусов, **И. С. Казанцева**, Н. В. Ломова, А. В. Холзаков, И. Н. Шабанова, Н. Е. Суксин // Журнал прикладной химии. – 2022. – Т. 95, № 4. – С. 458–467.

6. **Kazantseva, I. S.** Mechanism of enhancing corrosion inhibition of carbon steel by nitrilo-tris(methylenephosphonato)zinc in neutral chloride-containing environments: electrochemical and XPS studies / I. S. Kazantseva, F. F. Chausov, N. V. Lomova, V. L. Vorob'yov, A. N. Maratkanova // Materials Today Communications. – 2022. – V. 32. – Article number 104022.

7. Чаусов, Ф. Ф. Поведение двух магнитных состояний с температурой в "умных" антикоррозионных покрытиях / Ф. Ф. Чаусов, А. Л. Ульянов, И. С. Казанцева, Л. В. Добышева // Физика металлов и металловедение. – 2023. – Т. 124, № 1. – С. 36–41.

8. Казанцева, И. С. Влияние кадмиевого комплекса нитрило-трисметиленфосфоновой кислоты на коррозионно-электрохимическое поведение низкоуглеродистой стали в нейтральных водных средах, содержащих хлорид-ионы / Ф. Ф. Чаусов, Н. В. Ломова, В. Л. Воробьев И.С.Казанцева, // Физикохимия поверхности и защита материалов. - 2023. - Т. 59, № 3. - С. 330-340.

9. Kazantseva, I. S. Inhibition Efficiency and Mechanism of Nitrilotris(Methylenephosphonato)Zinc on Mild Steel Corrosion in Neutral Aqueous Fluoride-Containing Media / I. S. Kazantseva, F. F. Chausov, V. L. Vorob'yov, N. V. Lomova, A. N. Maratkanova, I. K. Averkiev // Corrosion Reviews. – 2024. – V. 42, № 1. – P. 107– 123.

10. Казанцева, И. С. Эффективность и механизм действия цинкового комплекса нитрило-*трис*-метиленфосфоновой кислоты как ингибитора коррозии низкоуглеродистой стали в нейтральных бромид- и иодидсодержащих водных средах / И. С. Казанцева, Ф. Ф. Чаусов, В. Л. Воробьёв, Н. В. Ломова, Н. Ю. Исупов // Журнал физической химии. – 2024. – Т. 98, № 2. С. 37–51.

11. Казанцева, И. С. Локализация реакций формирования защитных гетерополиядерных комплексов в толще оксидно-гидроксидных пассивирующих плёнок на поверхности низкоуглеродистой стали / И. С. Казанцева, Ф. Ф. Чаусов, Н. В. Ломова, В. Л. Воробьёв, Н. Ю. Исупов // Журнал общей химии. – 2025. – Т. 94, № 10. – С. 1043–1057.

12. **Kazantseva, I. S.** Efficiency of a Cadmium Complex of Nitriltrismethylenephosphonic Acid As a Corrosion Inhibitor of Low-Carbon Steel in Neutral Iodide-Containing Aqueous Media and Features of Formation of Passivating Films under These Conditions / I. S. Kazantseva, F. F. Chausov, V. L. Vorob'ev, N. V. Lomova, N. Yu. Isupov // Russian Journal of Physical Chemistry A. – 2025. – V. 99, № 4. – P. 676–683.

Влияние ингибитора ZnNTP 13. Казанцева, И. С. на коррозионноэлектрохимическое поведение низкоуглеродистой стали В нейтральных фторидсодержащих водных средах / И. С. Казанцева, Ф. Ф. Чаусов, В. Л. Воробьев, Н. В. Ломова, И. К. Аверкиев // Сб. трудов XV Международной школы-конференции молодых учёных «КоМУ-2023», Ижевск, 2023 (16-24 октября). - С. 53-54.

14. Казанцева, И. С. Особенности влияния галогенид-ионов на пассивацию низкоуглеродистой стали в нейтральных водных средах / И. С. Казанцева, Ф. Ф. Чаусов, В. Л. Воробьев, Н. В. Ломова, И. К. Аверкиев // Сб. материалов I Всероссийской научной конференции с международным участием «Теоретические и прикладные аспекты электрохимических процессов и защита от коррозии», Казань, 2023 (20–23 ноября). – С. 147–148.