Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Казанский национальный исследовательский технологический университет» (ФГБОУ ВО «КНИТУ»)

УТВЕРЖДАЮ Проректор по УР А.В. Бурмистров

РАБОЧАЯ ПРОГРАММА

По дисциплине Б1.В.0Д.6 «Физическая и коллоидная химия» Направление подготовки 44.03.04 «Профессиональное обучение (по отраслям)»

Профиль подготовки «Химическое производство»

Квалификация выпускника БАКАЛАВР

Форма обучения

ЗАОЧНАЯ

Институт, факультет, кафедра ИДПО, Центр переподготовки и повышения квалификации преподавателей, факультет социотехнических систем (ФСТС), кафедра инженерной педагогики и психологии

Кафедра-разработчик рабочей программы Кафедра физической и коллоидной химии

Курс, семестр 3 курс, 5, 6 семестр

	Часы	Зачетные единицы
Лекции	12	0,33
Практические занятия		
Семинарские занятия		
Лабораторные занятия	16	0,45
Самостоятельная работа	175	4,86
Форма аттестации: Контрольная работа 5 семестр Зачет 5 семестр Контрольная работа 6 семестр Экзамен 6 семестр	13	0,36
Bcero	216	6

Рабочая программа составлена с учетом требований Федерального государственного образовательного стандарта высшего образования, утвержденного 1 октября 2015 года № 1085 по направлению подготовки 44.03.04 «Профессиональное обучение (по отраслям)» для профиля «Химическое производство», на основании учебного плана набора обучающихся 2013, 2017 гг.

ооучающихся 2013, 2017 гг.		
Разработчик программы:		
Профессор	Blif	С.В. Шилова
Профессор	Bopoef-	<u>С.В. Шилова</u> В.Е. Проскурина
Рабочая программа рассмотре <u>Физической и коллоидной химии</u> протокол от	<u>1</u> ,	на заседании кафедры
Зав. кафедрой ФКХ, профессор	MI	Ю.Г. Галяметдинов
СОГЛАСОВАНО		
Протокол заседания методическог <u>30, 10,</u> 2017 г. № <u>3</u>	ой комиссии факул	ьтета СТС
Председатель комиссии, професс	op Junes	Н.Ш. Валеева
УТВЕРЖДЕНО Протокол заседания методичес 2017 г. №	кой комиссии фак	ультета ХТПМК от <u>14, 1</u> 3
Председатель комиссии, професс	op lift	Д.Ш. Султанова
	.4	

Начальник УМЦ, доцент

Л.А. Китаева

1. Цели освоения дисциплины

Целями освоения дисциплины «Физическая и коллоидная химия» являются:

- а) формирование знаний о направленности и закономерностях протекания химических процессов и фазовых превращений, об экспериментальных и теоретических методах исследования, базируясь на которых становится возможным дать количественное описание процессов, сопровождающихся изменением физического состояния и химического состава в системах различной сложности;
- б) овладение навыками применения теоретических законов физической и коллоидной химии и экспериментальных физико-химических методов для решения практических вопросов химической технологии;
- в) обучение способам математического описания, расчета и предсказания протекания процессов с использованием справочников, компьютерных баз и банков данных физико-химических величин.

2. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Физическая и коллоидная химия» относится к обязательным дисциплинам вариативной части ОП и формирует у бакалавров по направлению подготовки 44.03.04 «Профессиональное обучение (по отраслям)» профиля «Химическое производство» набор знаний, умений, навыков и компетенций.

Для успешного освоения дисциплины «Физическая и коллоидная химия» бакалавр по указанному направлению и профилю подготовки должен освоить материал предшествующих дисциплин:

- а) математика,
- б) химия,
- в) физика,
- г) общая и неорганическая химия,
- д) органическая химия.

Дисциплина «Физическая и коллоидная химия» является предшествующей и необходима для успешного усвоения последующих дисциплин:

- а) технологические основы синтеза полимеров,
- б) технологические основы переработки полимеров,
- в) общезаводское хозяйство предприятий по производству и переработке полимеров.

Знания, полученные при изучении дисциплины «Физическая и коллоидная химия», могут быть использованы при прохождении практик, могут быть использованы в научно-исследовательской, организационно-технологической деятельности и выполнении выпускных квалификационных работ по направлению подготовки 44.03.04 «Профессиональное обучение (по отраслям)».

3. Компетенции обучающегося, формируемые в результате освоения дисциплины

(ОПК-2) способностью выявлять естественнонаучную сущность проблем, возникающих в ходе профессионально-педагогической деятельности;

(ПК-3) способностью организовывать и осуществлять учебно-профессиональную и учебно-воспитательную деятельности в соответствии с требованиями профессиональных и федеральных государственных образовательных стандартов в ОО СПО;

(ПК-11)способностью организовывать учебно-исследовательскую работу обучающихся; (ПК-27) готовностью к организации образовательного процесса с применением интерактивных, эффективных технологий подготовки рабочих, служащих и специалистов среднего звена.

В результате освоения дисциплины обучающийся должен: 1) Знать:

- основы химической термодинамики, начала термодинамики и основные уравнения химической термодинамики;
- методы термодинамического описания химических и фазовых равновесий в многокомпонентных системах;
- основы химической кинетики, уравнения формальной кинетики;
- основы методов описания химических равновесий в растворах электролитов,
- термодинамику растворов электролитов и электрохимических систем;
- основные теории гомогенного, гетерогенного и ферментативного катализа;
- термодинамику поверхностных явлений;
- адсорбцию, смачивание и капиллярные явления (адсорбция на гладких поверхностях и пористых адсорбентах, капиллярная конденсация);
- адгезию и когезию;
- поверхностно-активные вещества;
- механизмы образования и строение двойного электрического слоя;
- электрокинетические явления;
- устойчивость дисперсных систем (седиментация в дисперсных системах, термодинамические и кинетические факторы агрегативной устойчивости);
- мицеллообразование;
- оптические явления в дисперсных системах;

2) Уметь:

- использовать основные приемы обработки экспериментальных данных;
- определять по справочным данным термодинамические характеристики химических реакций,
- определять по справочным данным характеристики диссоциации электролитов,
- проводить правильную оценку основных параметров микрогетерогенных систем по данным оптических, молекулярно-кинетических и электрокинетических методов анализа;
- проводить расчет размеров и полидисперсности по размерам частиц дисперсной фазы по данным обычной и скоростной (в ультрацентрифуге) седиментации;
- проводить оценку на количественном уровне влияние средних размеров частиц дисперсной фазы и полидисперсности по размерам на основные показатели композиционных материалов;
- уметь на практике применять современные теоретические представления при изучении адсорбционных явлений в многокомпонентных ультрамикрогетерогенных системах.

3) Владеть:

- знаниями в области устойчивости дисперсных систем, включающую седиментацию и процесс электролитной коагуляции;
- навыками вычисления адсорбционных параметров с использованием теорий моно- и полимолекулярной адсорбции;

- методами седиментации, светорассеяния, турбидиметрии, нефелометрии с целью определения размеров частиц дисперсной фазы.
- методами исследования физико-химических свойств биологически активных веществ.

4. Структура и содержание дисциплины «Физическая и коллоидная химия»

Общая трудоемкость дисциплины составляет 6 зачётных единиц, 216 часов.

№ п/п	Раздел дисциплины		Виды учебной работы (в часах)			Оценочные средства для	
		Семестр	Лекция	Практ ически е заняти я	Лабо ратор ные работ ы	CPC	проведения промежуточной аттестации по разделам
1	Основы химической термодинамики	4	2			7	Контрольная работа, реферат, собеседование
2	Введение вколлоидную химию	5	2			20	Контрольная работа, реферат, собеседование
3	Химическое равновесие	5			4	20	Лабораторная работа, контрольная работа, реферат, собеседование
4	Адсорбция на твердых поверхностях и на границе раздела «жидкость – газ»	5	2		4	20	Лабораторная работа, контрольная работа, реферат, собеседование
5	Фазовые равновесия	5	2			20	Контрольная работа, реферат, собеседование
	Форма аттестации						Зачет Защита контрольной работы
6	Электрокинетически е явления в коллоидных системах	6	2			18	Контрольная работа, реферат, собеседование
7	Химическая кинетика и катализ	6	2		4	16	Лабораторная работа, контрольная работа, реферат, собеседование

8	Оптические	6				18	Контрольная
	показатели						работа,
	коллоидных систем						реферат,
							собеседование
9	Молекулярно-	6				20	Контрольная
	кинетические						работа,
	свойства дисперсных						реферат,
	систем						собеседование
10	Стабилизация и	6			4	16	Лабораторная
	коагуляция						работа,
	коллоидных систем						контрольная
							работа,
							реферат,
							собеседование
							Экзамен
	Форма аттестации						Защита
							контрольной
							работы

5. Содержание лекционных занятий по темам с указанием формируемых компетенций

№	Раздел	Ча	Тема	Краткое содержание	Формир
п/п	дисциплины	сы	лекционного		уемые
			занятия		компете
					нции
1	Основы	2	Предмет и	Основные понятия химической	ОПК-2
	химической		метод	термодинамики. Внутренняя энергия,	ПК-3
	термодинами		термодинами	теплота и работа. Первый закон	ПК-11
	ки		ки	термодинамики. Работа расширения для различных процессов.	ПК-27
				Закон Гесса. Энтальпия. Теплота сгорания.	
				Теплоты образования. Теплоемкость –	
				виды, зависимость от температуры.	
				Зависимость теплового эффекта реакции от температуры. Уравнение Кирхгоффа в	
				дифференциальной и интегральной формах	
				и его анализ.	
				Уравнение второго начала термодинамики	
				для обратимых и необратимых процессов.	
				Энтропия как критерий направленнности	
				самопроизвольных процессов и равновесия	
				в изолированных системах. Функции	
				Гельмгольца и Гиббса как критерии направленности процесса и равновесия в	
				закрытых системах.	
2	Введение в	2	Коллоидная	Признаки объектов коллоидной химии:	ОПК-2
	коллоидну		химия – наука	гетерогенность и дисперсность.	ПК-3
	ю химию		о дисперсных	Количественные характеристики	ПК-11
	IO AMMINIO		системах и	дисперсности: удельная поверхность,	ПК-27
			поверхностны	кривизна поверхности, дисперсность. Классификация дисперсных систем по	

		T	1		,
			х явлениях в них	агрегатному состоянию и по взаимодействию дисперсной фазы и дисперсионной среды, классификация	
				свободно- и связно-дисперсных систем.	
4	Адсорбция на твердых поверхност ях и на границе раздела «жидкость — газ»	2	Адсорбционн ые процессы	Природа адсорбционных сил. Фундаментальное уравнение адсорбции Гиббса. Адсорбция газов и паров на однородной поверхности. Уравнение мономолекулярной адсорбции Ленгмюра. Уравнение Фрейндлиха. Полимолекулярная адсорбции Поляни и БЭТ. Уравнение изотермы адсорбции БЭТ. Мономолекулярная адсорбции БЭТ. Мономолекулярная адсорбции БЭТ. Мономолекулярная адсорбция на границе жидкость—газ. Поверхностно-активные вещества. Правило Дюкло-Траубе. Строение адсорбционных слоев ПАВ. Уравнения состояния. Уравнение Шишковского. Уравнение Фрумкина. Адсорбция из растворов на твердой поверхности. Правило выравнивания полярностей Ребиндера. Адсорбция ионов. Правило Фаянса — Панета. Ионообменная адсорбция. Иониты.	ОПК-2 ПК-3 ПК-11 ПК-27
5	Фазовые	2	Фазовые	Понятия фаза, компонент системы,	ОПК-2
	равновесия		равновесия	независимый компонент, степень свободы.	ПК-3
	1		равновесни	Общие условия равновесия в гетерогенных	ПК-11
				системах. Правило фаз Гиббса. Уравнение Клапейрона - Клаузиуса и его применение к	ПК-27
				различным фазовым равновесиям.	
				Диаграмма состав – свойство.	
				Однокомпонентные системы. Равновесие	
				кристаллы – расплав. Термический анализ.	
				Диаграммы состояния (плавкости) двухкомпонентных систем и их анализ на	
				основе правила фаз. Бинарные системы с	
				образованием эвтектики. Правило рычага.	
6	Электрокин	2	Электрокинет	Электрофорез, электроосмос и явления,	ОПК-2
	етические		ические	обратные им. Сущность электрокинетических явлений. Основные	ПК-3
	явления в коллоилны		явления в	положения теорий Гельмгольца и Гуи-	ПК-11 ПК-27
	коллоидны х системах		коллоидных	Чапмена. Сущность теории Штерна,	11K-27
	- VALUE VIVIENCE		системах	адсорбционный и диффузионный слой	
				ионов по Штерну. Понятие общего падения потенциала и дзета-потенциала. Сущность	
				явления перезарядки. Зависимость дзета-	
				потенциала от природы	
				потенциалопределяющих ионов и	
				противоионов, ионной силы, концентрации дисперсной фазы, рН, диэлектрической	
				проницаемости среды. Использование	
				электрокинетических явлений в	
7	V	2	Oavanyera	практических целях.	ОПИ 2
7	Химическа	2	Основные понятия и	Скорость реакции. Порядок реакции. Время полупревращения. Необратимые реакции	ОПК-2 ПК-3
	я кинетика и катализ		понятия и постулаты	нулевого, первого и второго порядков.	ПК-3
<u></u>	11 INGI GOING		11001 yJIai bi	* * * * * * * * * * * * * * * * * * * *	111/-11

химической кинетики. Катализ	Методы определения порядка реакции и вида кинетического уравнения. Сложные реакции. Принцип независимости протекания элементарных стадий. Методы составления кинетических уравнений. Уравнение Аррениуса. Энергия активации. Путь реакции. Переходное состояние. Определение и общие принципы катализа. Основные промышленные каталитические процессы. Механизмы каталитических процессов. Гомогенный катализ. Гетерогенный катализ.
---------------------------------	--

6. Содержание семинарских, практических занятий (лабораторного практикума)

Семинарские, практические занятия учебным планом по дисциплине «<u>Физическая и коллоидная химия</u>» не предусмотрены.

7. Содержание лабораторных занятий

Цель проведения лабораторных занятий по дисциплине «Физическая и коллоидная химия» - приобрести навыки решения комплексных физико-химических задач, проведения измерений и расчётов, осмысления, анализа и защиты полученных результатов, использования механизмов и условий протекания химических реакций, определения возможности управлять сложным физико-химическим процессом.

№	Раздел	Часы	Наименование лабораторной	Формируемые
п/п	дисциплины		работы	компетенции
3	Химическое	4	Химическое равновесие в	ОПК-2
	равновесие		гомогенных системах	ПК-3
				ПК-11
				ПК-27
4	Адсорбция на	4	Изучение адсорбции на	ОПК-2
	твердых		границе «твердое тело –	ПК-3
	поверхностях и на		раствор»	ПК-11
	границе раздела			ПК-27
	«жидкость – газ»			
7	Химическая	4	Изучение кинетики реакции	ОПК-2
	кинетика и катализ		инверсии сахарозы	ПК-3
				ПК-11
				ПК-27
10	Стабилизация и	4	Исследование электролитной	ОПК-2
	коагуляция		коагуляции золей	ПК-3
	коллоидных			ПК-11
	систем			ПК-27

Лабораторные работы проводятся в помещении учебной лаборатории с использованием специального оборудования и модуля учебно-лабораторного комплекса (УЛК) «Химия».

8. Самостоятельная работа бакалавра

№ п/п	Темы, выносимые на самостоятельную работу	Часы	Форма СРС	Формируе мые компетен ции
1	Основы химической термодинамики	7	Проработка лекционного материала. Написание конспекта. Подготовка к контрольной работе. Написание реферата.	ОПК-2 ПК-3 ПК-11 ПК-27
2	Введение в коллоидную химию	20	Проработка лекционного материала. Написание конспекта. Подготовка к контрольной работе. Написание реферата.	ОПК-2 ПК-3 ПК-11 ПК-27
3	Химическое равновесие	20	Подготовка к лабораторным работам и оформление отчетов. Подготовка к контрольной работе. Написание реферата.	ОПК-2 ПК-3 ПК-11 ПК-27
4	Адсорбция на твердых поверхностях и на границе раздела «жидкость — газ»	20	Проработка лекционного материала. Подготовка к лабораторным работам и оформление отчетов. Подготовка к контрольной работе. Написание реферата.	ОПК-2 ПК-3 ПК-11 ПК-27
5	Фазовые равновесия	20	Проработка лекционного материала. Написание конспекта. Подготовка к контрольной работе. Написание реферата.	ОПК-2 ПК-3 ПК-11 ПК-27
6	Электрокинетическ ие явления в коллоидных системах	18	Проработка лекционного материала. Написание конспекта. Подготовка к контрольной работе. Написание реферата.	ОПК-2 ПК-3 ПК-11 ПК-27
7	Химическая кинетика и катализ	16	Проработка лекционного материала. Подготовка к лабораторным работам и оформление отчетов. Подготовка к контрольной работе. Написание реферата.	ОПК-2 ПК-3 ПК-11 ПК-27
8	Оптические показатели коллоидных систем	18	Написание конспекта. Подготовка к контрольной работе. Написание реферата.	ОПК-2 ПК-3 ПК-11 ПК-27
9	Молекулярно- кинетические свойства дисперсных систем	20	Написание конспекта. Подготовка к контрольной работе. Написание реферата.	ОПК-2 ПК-3 ПК-11 ПК-27
10	Стабилизация и коагуляция коллоидных систем	16	Подготовка к лабораторным работам и оформление отчетов. Подготовка к контрольной работе. Написание реферата.	ОПК-2 ПК-3 ПК-11 ПК-27

9. Использование рейтинговой системы оценки знаний.

При оценке результатов деятельности обучающихся в рамках дисциплины «<u>Физическая и коллоидная химия</u>» используется рейтинговая система. Использование рейтинговой системы оценки знаний бакалавров проводится на основании «Положения о балльно-рейтинговой системе оценки знаний обучающихся и обеспечения качества учебного процесса» (Утверждено решением УМК Ученого совета ФГБОУ ВПО «КНИТУ», протокол № 12 от 24 октября 2011 г.).

Рейтинговая оценка формируется на основании текущего контроля. Максимальное и минимальное количество баллов по различным видам учебной работы описано в положении о рейтинговой системе.

При изучении дисциплины «<u>Физическая и коллоидная химия</u>» **в 5 семестре** предусматривается реферат, выполнение одной контрольной работы, двух лабораторных работ и два собеседования. За эти контрольные точки студент может получить минимальное и максимальное количество баллов (см. таблицу).

5 семестр

Оценочные средства	Кол-во	Min, баллов	Мах, баллов
Лабораторная работа	2	30	42
Контрольная работа	1	20	40
Реферат	1	6	10
Собеседование	2	4	8
Итого:		60	100

При изучении дисциплины «<u>Физическая и коллоидная химия</u>» в **6 семестре** предусматривается экзамен, реферат, выполнение одной контрольной работы и двух лабораторных работ. За эти контрольные точки студент может получить минимальное и максимальное количество баллов (см. таблицу).

За экзамен студент может получить минимум 24 балла и максимум – 40 баллов.

6 семестр

Оценочные средства	Кол-во	Міп, баллов	Мах, баллов
Лабораторная работа	2	20	32
Контрольная работа	1	10	18
Реферат	1	6	10
Экзамен		24	40
Итого:		60	100

10. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

Оценочные средства для проведения текущего контроля успеваемости, и промежуточной аттестации обучающихся разрабатываются согласно положению о Фондах оценочных средств, рассматриваются как составная часть рабочей программы и оформляются отдельным документом.

11. Информационно-методическое обеспечение дисциплины «Физическая и коллоидная химия», 2017 г.

11.1. Основная литература

При изучении дисциплины «<u>Физическая и коллоидная химия</u>» в качестве основных источников информации рекомендуется использовать следующую литературу:

Основные источники информации	Количество экземпляров
1. Фридрихсберг, Д.А. Курс коллоидной химии: учебник /	ЭБС «Лань» https://e.lanbook.com/book/4027
Д.А. Фридрихсберг СПб. : «Лань», 2010 416 с ISBN	
978-5-8114-1070-5.	регистрации с ІР-адресов КНИТУ
2. Горшков, В.И. Основы физической химии / В.И.	200 экз. в УНИЦ КНИТУ
Горшков, И.А. Кузнецов М.: БИНОМ, «Лаборатория	
знаний», 2011. – 408 с. – ISBN: 978-5-9963-0546-9.	
3. Булидорова, Г.В. Физическая химия : учеб. пособие для	70 экз. в УНИЦ КНИТУ
студ. вузов, обуч. по напр. «Химическая технология». / Г.В.	
Булидорова, В.П. Барабанов, Ю.Г. Галяметдинов, Х.М.	
Ярошевская Казан. нац. исслед. ун-т Казань, 2012	
392 c. – ISBN 978-5-7882-1367-5.	
4. Вишняков, А.В. Физическая химия / А.В. Вишняков,	75 экз. в УНИЦ КНИТУ
Н.Ф. Кизим. – М: «Химия», 2012. – 840 с. – ISBN: 978-5-	
98109-094-3	
5. Волков, В.А. Коллоидная химия. Поверхностные	
явления и дисперсные системы. СПб. : «Лань», 2015. – 672	https://e.lanbook.com/book/65045
c. – ISBN 978-5-8114-1819-0.	доступ из любой точки интернета после
	регистрации с ІР-адресов КНИТУ
6. Гельфман, М.И. Коллоидная химия : учеб. пособие /	ЭБС «Лань»
М.И. Гельфман, О.В. Ковалевич, В.П. Юстратов СПб. :	
«Лань», 2017. – 336 с. – ISBN 978-5-8114-0478-0	доступ из любой точки интернета после
	регистрации с ІР-адресов КНИТУ

11.2 Дополнительная литература

В качестве дополнительных источников информации рекомендуется использовать следующую литературу:

литературу.			
Дополнительные источники информации	Количество экземпляров		
1. Физическая и коллоидная химия: учебник / под ред. А.П.	1 экз. в УНИЦ КНИТУ		
Беляева [и др.] . – М. : ГЭОТАР-Медиа, 2008 . – 701 с. – ISBN			
978-5-9704-0595-6.			
2. Русанов, А.И. Лекции по термодинамике поверхностей:	ЭБС «Лань»		
учеб. пособие / А.И. Русанов. – СПб. : «Лань», 2013. – 240 с. –	https://e.lanbook.com/book/6602		
978-5-8114-1487-1	доступ из любой точки интернета		
	после регистрации с ІР-адресов КНИТУ		
3. Илюшин, В.А. Физикохимия наноструктурированных	ЭБС «Znanium»		
материалов / В.А. Илюшин – Новосибирск : Новосибирский	http://znanium.com/go.php?id=546597		
государственный технический университет (НГТУ), 2013	доступ из любой точки 12нтернета		
107 c. – ISBN 978-5-7782-2215-1.	после регистрации с ІР-адресов КНИТУ		

11.3 Электронные источники информации

Электронный каталог УНИЦ КНИТУ. – Режим доступа: http://ruslan.kstu.ru/
Электронная библиотека УНИЦ КНИТУ. – Режим доступа: http://ft.kstu.ru/ft/
Научная электронная библиотека eLIBRARY.RU. – Режим доступа
http://elibrary.ru/defaultx.asp
Образовательный портал по химии "HIMUS" [Электронный ресурс]. – Режим доступа: http://himus.umi.ru/

СОГЛАСОВАНО:

Зав. сектором ОКУФ

ФЕДЕРАЛЬНОЕ ГОСУДИРСТВЕННОЕ БІОДЖЕТНОЕ ОБРАЗОВАТЕЛЬЦИЯ У ЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «КАЗАНСКИЯ НАЩИВЫМАЛЬНИЙ РИССЛЕДОВАТЕЛЬСКИЙ ТЕХИОЛОГИЧЕСКИЙ ЗИВВЕРСИТЕТ» У ЧЕО НО РИДУННЫЙ И СИМПР

И.И. Усольцева

11. Информационно-методическое обеспечение дисциплины «Физическая и коллоидная химия», 2013 г.

11.1. Основная литература

При изучении дисциплины «Физическая и коллоидная химия» в качестве основных источников информации рекомендуется использовать следующую литературу:

Основные источники информации	Количество экземпляров		
1. Фридрихсберг, Д.А. Курс коллоидной химии: учебник /	ЭБС «Лань» https://e.lanbook.com/book/4027		
Д.А. Фридрихсберг СПб. : «Лань», 2010 416 с ISBN	доступ из любой точки интернета после		
978-5-8114-1070-5.	регистрации с ІР-адресов КНИТУ		
2. Горшков, В.И. Основы физической химии / В.И.	200 экз. в УНИЦ КНИТУ		
Горшков, И.А. Кузнецов М.: БИНОМ, «Лаборатория			
знаний», 2011. – 408 с. – ISBN: 978-5-9963-0546-9.			
3. Булидорова, Г.В. Физическая химия : учеб. пособие для	70 экз. в УНИЦ КНИТУ		
студ. вузов, обуч. по напр. «Химическая технология». / Г.В.			
Булидорова, В.П. Барабанов, Ю.Г. Галяметдинов, Х.М.			
Ярошевская Казан. нац. исслед. ун-т Казань, 2012			
392 c. – ISBN 978-5-7882-1367-5.			
4. Вишняков, А.В. Физическая химия / А.В. Вишняков,	75 экз. в УНИЦ КНИТУ		
Н.Ф. Кизим. – М: «Химия», 2012. – 840 с. – ISBN: 978-5-			
98109-094-3			

11.2 Дополнительная литература

В качестве дополнительных источников информации рекомендуется использовать следующую литературу:

Дополнительные источники информации	Количество экземпляров		
1. Физическая и коллоидная химия : учеб. пособие / ГОУ ВПО	1 экз. в УНИЦ КНИТУ		
«Российская эконом. акад. им. Г.В. Плеханова» М.: 2007			
120 c. – ISBN 978-5-7307-0667-5			
2. Физическая и коллоидная химия : учебник / под ред. А.П.	1 экз. в УНИЦ КНИТУ		
Беляева [и др.] . – М.: ГЭОТАР-Медиа, 2008 . – 701 с. – ISBN			
978-5-9704-0595-6.			
3. Ролдугин, В.И. Физикохимия поверхности : учебник -	ЭБС «Znanium»		
монография / В.И. Ролдугин – 2-е изд., испр. – Долгопрудный:			
Издательский дом «Интеллект», 2011 568 с ISBN 978-5-	доступ из любой точки 13нтернета		
91559-116-4.	после регистрации с ІР-адресов КНИТУ		
4. Русанов, А.И. Лекции по термодинамике поверхностей:	ЭБС «Лань»		
	https://e.lanbook.com/book/6602		
978-5-8114-1487-1	доступ из любой точки интернета		
	после регистрации с ІР-адресов КНИТУ		
5. Илюшин, В.А. Физикохимия наноструктурированных			
материалов / В.А. Илюшин – Новосибирск : Новосибирский			
государственный технический университет (НГТУ), 2013	доступ из любой точки 13нтернета		
107 c. – ISBN 978-5-7782-2215-1.	после регистрации с ІР-адресов КНИТУ		

11.3 Электронные источники информации

Электронный каталог УНИЦ КНИТУ. – Режим доступа: http://ruslan.kstu.ru/
Электронная библиотека УНИЦ КНИТУ. – Режим доступа: http://ft.kstu.ru/ft/
Научная электронная библиотека eLIBRARY.RU. – Режим доступа
http://elibrary.ru/defaultx.asp
Образовательный портал по химии "HIMUS" [Электронный ресурс]. – Режим доступа: http://himus.umi.ru/

СОГЛАСОВАНО:

Зав. сектором ОКУФ

ФЕДЕРАЛЬНОЕ ТОСУДАР СТЕЙННОЕ БЮДЖЕТВОЕ
ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕТО
В БРАЗОВАНЕЯ
«КАЗАНСКИЙ ВИМИТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕТО
ТЕХНОМОГИЧЕСКИЙ УНИВЕРСИТЕТЬ

ТОТИ ОТ НЕМ УЧНЫЙ
ИНТО ОМАЦИОННЫЙ ЦЕНТР

А.А. Володягина

12. Материально-техническое обеспечение дисциплины (модуля).

При изучении дисциплины «<u>Физическая и коллоидная химия</u>» предусмотрено следующее материально-техническое обеспечение:

- 1. Лекционные занятия:
- комплект электронных презентаций;
- аудитория, оснащенная презентационной техникой (проектор, экран, компьютер, лазерная указка).
- 2. Лабораторные работы:
- Учебная лаборатория кафедры физической и коллоидной химии, оснащенная компьютерными учебными комплексами «Химия», термометрами, термостатами, водяными банями, установками для титрования, весами аналитическими, набором химической посуды и реактивов.
- шаблоны отчетов по лабораторным работам,
- компьютерный класс с доступом в Интернет,
- пакеты ПО общего назначения (текстовый редактор Microsoft Word 2010, графический редактор Paint, программа для работы с электронными таблицами Microsoft Excel 2010,
- 3. Прочее
- рабочее место преподавателя, оснащенное компьютером с доступом в Интернет,
- рабочие места студентов, оснащенные компьютерами с доступом в Интернет, предназначенные для работы в электронной образовательной среде.

13. Образовательные технологии

Для достижения планируемых результатов обучения, в дисциплине «<u>Физическая и</u> коллоидная химия» используются различные образовательные технологии.

- 13.1 *Информационно-развивающие технологии*, направленные на овладение большим запасом знаний, запоминание и свободное оперирование ими. Используется лекционно-семинарский метод, самостоятельное изучение литературы, применение новых информационных технологий для самостоятельного пополнения знаний, включая использование технических и электронных средств информации.
- 13.2 Развивающие проблемно-ориентированные технологии, направленные на формирование и развитие проблемного мышления, мыслительной активности, способности проблемно мыслить, видеть и формулировать проблемы, выбирать способы и средства для их решения. При этом используются следующие уровни сложности и самостоятельности: проблемное изложение учебного материала преподавателем; создание преподавателем проблемных ситуаций.
- 13.3. Деятельностные практико-ориентированные технологии, направленные на формирование системы профессиональных практических умений при проведении экспериментальных исследований. Реализуются в ходе подготовки, выполнения и обсуждения лабораторных работ.
- 13.4. Личностно-ориентированные технологии обучения, обеспечивающие в ходе учебного процесса учет различных способностей обучаемых, создание необходимых условий для развития их индивидуальных способностей, развитие активности личности в учебном процессе. Личностно-ориентированные технологии обучения реализуются в результате индивидуального общения преподавателя и студента на занятиях, при подготовке и защите отчетов по лабораторным работам, при обсуждении рефератов.

Используемые в **лекционном курсе** инновационные образовательные технологии: <u>лекция-визуализация</u>, проблемная лекция.

Проблемная лекция «Введение в коллоидную химию» (2 часа)

Для создания проблемной ситуации аспирантам предлагается выдвинуть предположения о причинах различия физико-химических свойств нано-, микро- и макрообъектов.

Лекция-визуализация «Фазовые равновесия» (2 часа)

Лекция-визуализация представляет собой визуальную форму подачи лекционного материала средствами ТСО. Чтение такой лекции сводится к развернутому или краткому комментированию просматриваемых визуальных материалов.

Используемые в ходе **лабораторных занятий** интерактивные формы обучения и инновационные образовательные технологии: семинар-дискуссия, включающий доклады студентов и их обсуждение.

Удельный вес занятий, проводимых в интерактивных формах, составляет 8 часов: лекции (4 часа) и лабораторные занятия (4 часа).

Лист переутверждения рабочей программы

1 at	лочая программа і	10 дисципли	.нс «		"	
	1 1	(наименование дисциплины)				
пересмотрена		на	заседании		кафедры	
			(наименование	кафедры)		_
	Дата	Нал	Налич	По	Подпи	Подп
Π/Π	переутверждения	ичие	ие изменений	дпись	СР	ись
	РП (протокол	изменений	в списке	разработ-	заведующего	начальника
	заседания		литературы	чика РП	кафедрой	УМЦ/ОМг/
	кафедры № от					ОАиД
	20)					
		нет	Нет/ест			
			Ь			