Федеральное агентство по образованию Российской федерации Государственное образовательное учреждение высшего профессионального образования

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ 12-14 ОКТЯБРЯ 2010 г.

ВСЕРОССИЙСКАЯ СТУДЕНЧЕСКАЯ ОЛИМПИАДА

«ХИМИЯ И ФИЗИКА ВЫСОКОМОЛЕКУЛЯРНЫХ

СОЕДИНЕНИЙ»

ОЛИМПИАДНЫЕ ЗАДАНИЯ С РЕШЕНИЯМИ

Казань, 2010

Федеральное агентство по образованию Российской федерации Государственное образовательное учреждение высшего профессионального образования

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ 12-14 ОКТЯБРЯ 2010 г.

ВСЕРОССИЙСКАЯ СТУДЕНЧЕСКАЯ ОЛИМПИАДА

«ХИМИЯ И ФИЗИКА ВЫСОКОМОЛЕКУЛЯРНЫХ

СОЕДИНЕНИЙ»

ОЛИМПИАДНЫЕ ЗАДАНИЯ С РЕШЕНИЯМИ

Составители

Проф. Архиреев В. П., Проф. Хакимуллин Ю. Н., Проф. Гарипов Р.М.

Задание № 1 (6 баллов).

Укажите пути регулирования молекулярных масс полимеров, получаемых методом радикальной полимеризации.

Ответ:

- 1.Одним из способов регулирования молекулярных масс при радикальной полимеризации является изменение концентрации мономера в исходной рецептуре. Согласно кинетике процесса, степень полимеризации полимеров определяется выражением $n=k^*[M]^{1/2}\cdot[I]^{-1/2}$, где [M] концентрация мономера, [I] концентрация инициатора. Согласно этого выражения, молекулярная масса полимера снижается с увеличением концентрации инициатора.
- 2. Молекулярная масса полимеров при радикальной полимеризации может меняться при изменении температуры реакции. Например, при повышении температуры полимеризации происходит увеличение скоростей стадий процесса полимеризации: образования активных центров, роста и обрыва цепей. Среди них наибольшую энергию активации имеет реакция распада инициаторов (около 150 кДж/моль), поэтому при повышении температуры из всех стадий процесса ускорится стадия образования активных центров. Это приведет к снижению молекулярной массы полимера.
- 3. При использовании тех методов проведения реакции радикальной полимеризации, где возможно изменение концентрации мономера, повышение концентрации мономера приводит к увеличению молекулярной массы полимера.
- 4.Использование методов «псевдоживой» полимеризации для получения полимеров позволяет регулировать молекулярную массу полимеров, так как в этом случае появляется зависимость молекулярной массы полимера от конверсии мономеров. Поэтому изменяя продолжительность реакции полимеризации можно изменять молекулярную массу образующего полимера.

Задание № 2 (8 баллов).

Как можно получать блок-сополимер следующего строения:

$$\begin{array}{|c|c|c|c|c|}\hline \begin{pmatrix} CH_3 & CH_3 \\ C & C \\ \end{pmatrix} & \begin{pmatrix} H_2 & C \\ \end{pmatrix} & \\ C & C \\ \end{pmatrix} & \\ O & OC_4H_9 \\ & \\ k \\ \end{array}$$

Ответ:

Синтез блок сополимеров такого строения возможно при использовании анионной полимеризации в присутствии металлоорганических катализаторов (бутил лития,

этил натрия и др.) и при использовании сверхчистых мономеров (метилметакрилат и бутилметакрилат). На первой стадии происходит образование первого блока:

а) образование активного центра

$$R^-Me^+ + H_2C \longrightarrow C \longrightarrow R \longrightarrow C^{H_3}$$
 $R \longrightarrow C^{H_3} \longrightarrow C \longrightarrow C \longrightarrow C^{H_3}$
 $C \longrightarrow C \longrightarrow C \longrightarrow C \longrightarrow C$
 $C \longrightarrow C \longrightarrow C \longrightarrow C$
 $C \longrightarrow C$
 C

б) рост цепи

$$R \xrightarrow{CH_3} CH_3$$

$$R \xrightarrow{CH_3} R \xrightarrow{CH_$$

Так как используются сверхчистые компоненты, то реакции обрыва цепи отсутствуют. Тогда после полной конверсии ММА в реакционную смесь можно ввести БМА, и образуется второй блок:

$$R \xrightarrow{CH_{3}} CH_{3} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{CH_{3}} R \xrightarrow{CH_{3}} R \xrightarrow{CH_{3}} CH_{3} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{CH_{3}} R \xrightarrow{CH_{3}} R \xrightarrow{CH_{3}} R \xrightarrow{CH_{3}} CH_{3} \xrightarrow{CH_{3}} R \xrightarrow{CH_{3}} CH_{3} \xrightarrow{CH_{3}} R \xrightarrow{CH_{3}} R \xrightarrow{CH_{3}} R \xrightarrow{CH_{3}} CH_{3} \xrightarrow{CH_{3}} R \xrightarrow{CH_{3}} R \xrightarrow{CH_{3}} CH_{3} \xrightarrow{CH_{3}} R \xrightarrow{CH_{3}} CH_{3} CH_{3} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{CH$$

Такую операцию необходимо повторить k раз.

Задание № 3 (10 баллов).

Рассчитать константы сополимеризации винилацетата с винилхлоридом, если установлен состав сополимеров, полученных радикальной сополимеризацией при различных соотношениях мономеров при 5 % конверсии исходных мономеров. 10 баллов

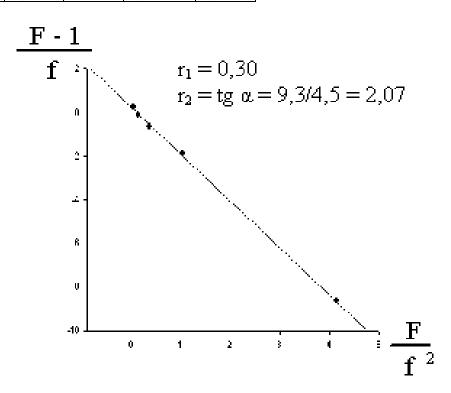
Состав мономеров, мас. %		Состав сополимеров, мас. %	
[BA]	[BX]	$[BA]_n$	$[BX]_n$
10	90	5	95
30	70	16	84
50	50	26	74
70	30	44	56
90	10	76	24

Ответ:

Константы сополимеризации можно определить, используя метод M. Файнмана и C. Росса. Введем параметры F и f, определяемые как $F=[BA]_n/[BX]_n$ и f=[BA]/[BX]. Тогда при малых степенях конверсии дифференциальный состав сополимера отождествляют интегральным и записывают:

$$\frac{[BA]_n}{[BX]_n} = \frac{[BA]}{[BX]} \cdot \frac{r_1[BA] + [BX]}{r_2[BX] + [BA]}$$

Используя параметры F и f, получим:


$$r_2 = f \left[\frac{1}{F} (f r_1 + 1) - 1 \right]$$

После преобразования получаем:

$$\frac{\mathbf{F} \cdot \mathbf{1}}{\mathbf{f}} = \mathbf{r}_1 + \frac{\mathbf{F}}{\mathbf{f}^2} \mathbf{r}_2$$

Построим график в координатах $\frac{F \cdot 1}{f}$ и $\frac{F}{f^2}$, тогда отрезок, отсекаемый на оси ординат, даст величину r_1 , а наклон прямой r_2 .

No	F	f	<u>F-1</u>	$\frac{\mathbf{F}}{\mathbf{f}^2}$
1	0,05	0,11	-8,64	4,13
2	0,19	0,43	-1,88	1,03
3	0,35	1	-0,64	0,35
4	0,78	2,33	-0,09	0,14
5	3,17	9	0,24	0,04

Задание № 4 (6 баллов).

\sim				
()препепите	соответствие	REIIIECTR I	Y II K	пазнапениа
Опродолите	COOLDCICIDIC	веществ і	a ria	masma ichini

Химическое соединение	Назначение	
кислота Льюиса+промотор	инициатор	
четыреххлористый углерод	катализатор	
перекись бензоила	ингибитор	
гидрохинон	регулятор	

Дайте краткую характеристику по использованию указанных соединений.

Ответ:

Перекись бензоила — инициатор кислота Льюиса+промотор — катализатор гидрохинон — ингибитор четыреххлористый углерод — регулятор

Для химического инициирования радикальной полимеризации используют химические вещества — инициаторы, легко распадающиеся при нагревании или освещении на свободные радикалы. Распад инициатора на свободные радикалы и активация ими молекулы мономера составляют два акта стадии химического инициирования радикальной полимеризации. Распад перекиси бензоила происходит по схеме:

$$C_6H_5 - C(O) - O - O - C(O) - C_6H_5 \rightarrow C_6H_5 + C_6H_5 - C(O) - O' + CO_2$$

Ингибиторы полимеризации (в частности, гидрохинон) — вещества, вызывающие прекращение или замедление реакций. Используются в основном для предотвращения преждевременной полимеризации мономеров, например, в процессе хранения и транспортировки. Они непосредственно участвуют в реакции рекомбинационного обрыва цепи или передачи цепи с обязательным образованием неактивных радикалов. Ингибитор добавляется от 0,1 до 1%.

Регуляторы действуют аналогично ингибиторам, однако, образующиеся в результате передачи цепи радикалы являются такими же активными, как и предшествующие. Небольшое количество регуляторов или модификаторов (от 2 до 6%) могут отрегулировать молекулярную массу, полидисперсность и степень разветвленности полимера.

Распространенными катализаторами катионной полимеризации наряду с протонными кислотами являются апротонные кислоты (кислоты Льюиса, катализаторы Фриделя – Крафтса) – общей формулы Me Xn, где: Ме - металл, X – чаще всего галоген: BF_3 Al Cl $_3$, Sn Cl $_4$, Ti Cl $_3$, Fe Cl $_3$ и др.

Катализаторы этой группы активны в присутствии сокатализаторов (промоторов) — ${\rm H}_{\,2}{\rm O},~{\rm HCl}$ - с которыми они образуют комплекс типа

 $H^{+}(BF_{3} OH)^{-}$ и становятся также донорами протонов. На стадии инициирования протон присоединяется к молекуле мономера и образуется ионная пара:

$$CH_3$$
 $C = CH_2^{-\delta} + H^+[BF_3OH]$
 CH_3
 CH_3
 CH_3
 $C^+[BF_3OH]$
 CH_3

Задание № 5 (8 баллов).

Назовите отличия ступенчатых процессов синтеза полимеров от цепных по следующим параметрам:

Α	Характер промежуточных продуктов
Б	Изменение молекулярной массы по ходу реакции
В	Скорость расходования исходных мономеров
Γ	Присутствие высокомолекулярных продуктов в реакционной системе
Д	Исходные, промежуточные и конечные продукты

Ответ:

А: в ступенчатых процессах это устойчивые, стабильные молекулярные продукты; в цепных – неустойчивые (свободные радикалы, ионы с малым временем жизни).

Б: в ступенчатых – постепенный рост со степенью превращения во времени; в цепных – практически мгновенное образование конечных по размеру макромолекул, которые остаются неизменными по ходу реакции.

В: в процессах поликонденсации мономер быстро расходуется на образование димеров, тримеров и т. д. , т.е. низкомолекулярных устойчивых продуктов, которые реагируют друг с другом с образованием олигомеров и высокомолекулярных соединений (при n=10, остается 1% мономера).

В цепных процессах мономер постепенно расходуется по ходу реакции и присутствует на любой ее стадии в достаточных количествах до полной глубины превращения.

Г: в ступенчатых процессах высокомолекулярные продукты появляются лишь при высоких степенях превращения функциональных групп (уравнение Карозерса), т.е. при большом времени реакции. В цепных процессах полимер присутствует на любой стадии реакции, и увеличение времени реакции приводит лишь к более полной конверсии мономера.

Д: в ступенчатых процессах можно определить содержание всех этих продуктов на любой стадии реакции, т.к. они устойчивы. Их размер, т.е. молекулярно-массовое распределение непрерывно меняется по ходу реакции.

В цепных процессах на любой стадии реакции в системе присутствуют только мономер и полимер. Количество промежуточных продуктов неизмеримо мало

(концентрация $\approx 10^{-8}$ %) Молекулярно — массовое распределение практически не меняется.

Задание № 6 (10 баллов).

Используя уравнение Карозерса, рассчитайте глубину превращения реакции поликонденсации адипиновой кислоты со следующими мономерами:

Этиленгликоль, при x=100 Диэтиленгликоль, при x=20 Глицерин Пентаэритрит

С помощью уравнения Карозерса докажите, что при конденсации монофункциональных соединений образование полимера невозможно.

Ответ:

Степень завершенности реакции ступенчатого синтеза полимеров характеризуется количеством прореагировавших групп за определенный период их взаимодействия. Связь между степенью поликонденсации х и степенью завершенности (или глубиной превращения) Р описывается уравнением Карозерса. Оно справедливо только при эквимолекулярном соотношении реагирующих групп.

$$P = \frac{2}{\bar{f}} - \frac{2}{\bar{f} \cdot \bar{x}},$$

где \bar{f} — средняя функциональность мономеров, участвующих в поликонденсации;

 \bar{x} — средняя степень полимеризации продукта реакции.

Средняя функциональность мономеров в процессе поликонденсации определяется выражением:

$$\bar{f} = \frac{(\sum n_i \cdot f_i)}{(\sum n_i)},$$

где n_i - число молекул i-го мономера с функциональностью f_i .

В случаях А и Б в поликонденсации участвуют бифункциональные мономеры, поэтому средняя функциональность их равна 2.

Для A -
$$P = 2/2 - 2/(2*100) = 0,99$$
.
Для Б - $P = 2/2 - 2/(2*20) = 0,95$.

Т.е. образование поликонденсационного полимера с большим количеством элементарных звеньев возможно только при очень большой степени превращения.

В случае $\bar{f}>2$, когда образуется сетчатый полимер, полная конверсия всех функциональных групп даже теоретически невозможна. Если допустить, что $\bar{x}\to\infty$, то значением 2/(f*x) в уравнении Карозерса можно пренебречь. Тогда для любого случая при $\bar{f}>2$ можно вычислить P критическую $=2/\bar{f}$, при которой начинается образование трехмерного полимера.

В соответствие у условиями эквимолекулярности для случая В, левая часть реакции будет выглядеть следующим образом:

$$2 (HO-CH2)2CH-OH + 3 HOOC-(CH2)2-COOH,$$

тогда
$$\overline{f} = (2*3 + 3*2)/(2+3) = 2,4$$
 и $P_{\text{крит}} = 2 / 2,4 = 0,83$.

Для случая Γ : (HO- CH₂)₄C + 2HOOC-(CH₂)₂-COOH,

тогда
$$\overline{f} = (1*4 + 2*2)/(1+2) = 2,7 \text{ и } P_{\text{крит}} = 2 / 2,7 = 0,74.$$

Уравнение Карозерса можно представить в форме $\bar{x}=2/(2-p\bar{f})$; Если реагируют монофункциональные соединения, т.е. f=1 ,тогда даже при максимально возможной степени превращения P=1:

x = 2 / (2-1) = 2, т.е. в лучшем случае мы получим димер, а образование полимера невозможно.

Задание № 7 (6 баллов).

Перечислите какие из полимеров в промышленном масштабе получают в результате химических реакций полимеров (полимераналогичные превращения). Напишите реакции получения таким способом промышленных синтетических каучуков.

Ответ:

Полимераналогичные превращения — это реакции, в которых реагирующей единицей является звено полимерной цепи, при этом изменяется состав или строение звеньев, но их число в цепи, т.е. степень полимеризации, не меняется. Такие реакции используются для химической модификации природных (нитраты и ацетаты целлюлозы) и синтетических полимеров (эпоксидирование, гидрирование, взаимодействие с малеиновым ангидридом, нитрозосоединениями, меркаптанами), получения полимеров, которые невозможно получить из мономеров ввиду их отсутствия (поливиниловый спирт, поливиниламин).

Галогенированием бутилкаучука получают **хлорбутилкаучук** (ХБК) **и бромбутилкаучук** (ББК). Галогенирование БК происходит за счет присоединения хлора по имеющимся в каучуке изопреновым звеньям:

$$Cl_{2} \rightarrow 2Cl^{*}$$

$$CH_{3} \qquad CH_{3}$$

$$-CH_{2}\text{-C=CH-CH}_{2}\sim +Cl^{*} \rightarrow \text{-CH*-C=CH-CH}_{2}\sim +HCl$$

$$CH_{3} \qquad CH_{3} \qquad CH_{3}$$

$$-CH^{*}\text{-C=CH-CH}_{2}\sim \rightarrow \text{-CH=C-C*H-CH}_{2}\sim +Cl_{2} \rightarrow \text{-CH=C-CH-CH}_{2}\sim +Cl^{*}$$

Сульфохлорированием полиэтилена - хлорсульфополиэтилен (ХСПЭ):

Хлорированием полиэтилена - **хлорированный полиэтилен** (XП).

$$\sim$$
CH₂- CH₂ \sim + Cl* \rightarrow \sim CH₂- C*H \sim + HCl \sim CH₂- C*H \sim + Cl* \rightarrow \sim CH₂- CH \sim | Cl

Задание № 8 (8 баллов).

Поясните какими показателями можно охарактеризовать электрические свойства полимеров? Отчего, в первую очередь, зависит диэлектрическая проницаемость полимеров?

Определите по виду кривых на рисунке, в координатах диэлектрическая проницаемость – температура, какая относится к неполярному, а какая к полярному полимеру и почему?

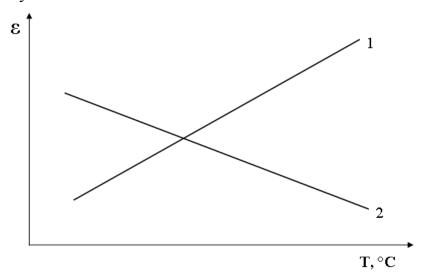


Рис. 1. Зависимость диэлектрической проницаемости полимера от температуры.

Ответ:

Поведение полимеров электрическом В поле характеризуется электрическими свойствами. К наиболее важным характеристикам электрических свойств полимеров онжом отнести удельное объемное поверхностное И электрическое сопротивление, электрическую прочность, диэлектрическую проницаемость и тангенс угла диэлектрических потерь.

Диэлектрическая проницаемость характеризует степень поляризуемости диэлектрика под действием внешнего электрического поля. В результате поляризации происходит ориентация имеющихся в полимере постоянных диполей и появление наведенных диполей в результате смещения электронной плотности в атоме или неполярной молекуле. Чем больше суммарный дипольный момент постоянных и наведенных диполей тем выше диэлектрическая проницаемость полимера. Диэлектрическая проницаемость - величина, показывающая во сколько раз сила взаимодействия двух зарядов меньше в среде диэлектрика (полимера) по сравнению с вакуумом.

Диэлектрическая проницаемость зависит в основном от химического строения полимера и определяется в основном наличием и числом несимметричных полярных групп в молекуле и степенью смещения в них электронной плотности, а также зависит от конфигурации, конформации макромолекул и их надмолекулярной структуры. По величине диэлектрической проницаемости (ϵ) полимеры делятся на:

неполярные $2,0 < \varepsilon < 2,5$ полярные $3,0 < \varepsilon < 4,0$

В неполярных полимерах ε обусловлена упругой поляризацией электронных оболочек. Увеличение подвижности цепей в полимере (например, повышение температуры) приводит к дезориентации наведенных полей что приводит к снижению ε . В случае полярных полимеров повышение подвижности ведет как правило к большей ориентации постоянных диполей что приводит к повышению ε . Поэтому кривая 1 относится к полярному полимеру а кривая 2 к неполярному.

Задание №9 (10 баллов).

Какиее показатели характеризуют параметры сетки сшитых полимеров? В каких случаях для сшитых полимеров возможно проявление высокоэластических свойств?

Ответ:

Для характеристики трехмерных сетчатых полимеров используют следующие параметры:

f - функциональность узлов (число цепей, сходящихся в узле);

N_c - число цепей между узлами в единице объема;

n_c - число узлов в единице объема;

ус - коэффициент сшивания - число поперечных связей на одну макромолекулу;

 v_c - плотность или концентрация цепей сетки, их содержание в единице объема;

 β_c - степень сшивания (доля сшитых звеньев на одну макромолекулу);

s - доля полимера находящегося в золе , т.е. доля полимера не вошедшего в процессе сшивания в состав сетки;

 $M_{c}\,$ - молекулярная масса основной цепи полимера между двумя поперечными связями;

 $W_a \,\,= 1$ - 2 $M_c/\,M_n\,\,$ - активная часть сетки.

$$v_c = \rho / M_c = N_c / N_A; \quad \gamma_c = M_n / M_c; \quad \beta_c = M_{_{3B}} / M_c; \quad \gamma_c = \beta_c \, n; \, s + \sqrt{s} = 1/\gamma_c$$

 $s + \sqrt{s} = 1/\gamma_c + \beta / \alpha$; (уравнение Чарлсби), где β –вероятность разрыва; α – вероятность сшивания;

 N_A — число Авогадро; M_n и $M_{_{3B}}$ — средняя молекулярная масса полимера и молекулярная масса звена; n —степень полимеризации;

Сшитый полимер будет проявлять высокоэластические свойства если значения $M_{\rm c}$ будут **больше** длины сегмента Куна (A) - термодинамического сегмента.

Задание №10 (6 баллов).

Укажите какие существуют способы оценки полидисперсности полимеров.

Ответ:

Количественной характеристикой полидисперсности является показатель полидисперсности: $K_{\rm D}$ = $(\overline{M}_{\rm w}/\overline{M_{\rm n}})$. Если образец монодисперсен, то $K_{\rm D}$ =1(редкий случай). Для большинства полидисперсных полимеров $K_D=2\div 20$. Для полидисперсности характеристики полимеров, кроме показателя полидисперсности, используются также кривые молекулярно-массового (MMP). Различают дифференциальные распределения интегральные И функции ММР (рис. 1), которые могут быть числовыми и массовыми. Интегральная кривая ММР – это зависимость между ММ и интегральной массовой (или числовой) долей фракций полимера.

Дифференциальная кривая ММР представляет собой зависимость ММ от массовой доли фракции (рис. 2, кривая 2)] или числовой доли фракции (МЧР) (рис. 2, кривая 1)]. Кривые МЧР и ММР не совпадают, т.к на числовое распределение большое влияние оказывают низкомолекулярные фракции, а на массовое распределение влияют высокомолекулярные фракции. Абсцисса центра тяжести площади, ограниченной кривой ММР, равна $\overline{M\omega}$, а абсцисса центра тяжести площади, ограниченной кривой МЧР, равна $\overline{M\omega}$, (см. рис. 2). Кривые распределения могут иметь один (унимодальные), два (бимодальные) или несколько максимумов (полимодальные).

При одинаковой средней MM полимеры могут иметь различное MMP – узкое (на рис. 3, кривая 2) и широкое (рис. 3, кривая 1).

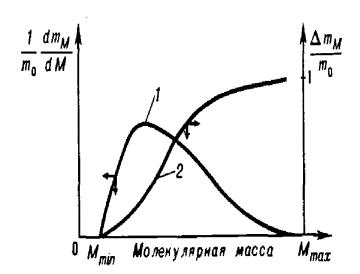


Рис. 2. Кривые интегрального (2) дифференциального (1) массового ММР полимера. Здесь $\Delta m/m_0$ — относительная интегральная доля фракций, $(1/m_0)(dm/dM)$ — массовая доля фракций.

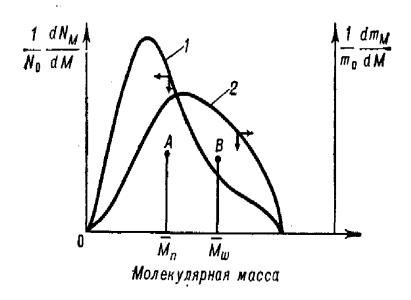


Рис. 3. Дифференциальные кривые МЧР (1) и ММР(2).

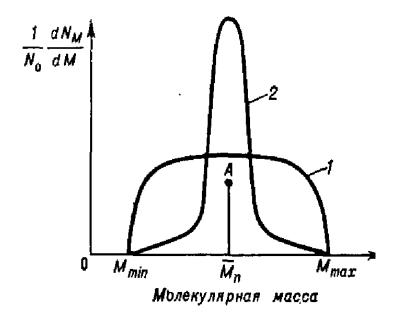


Рис. 4. Кривые MMP с различной полидисперсностью и одинаковым значением средней MM.