АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

Б1.Б.21 Общая химическая технология

<u>по специальности:</u> 18.05.01 «Химическая технология энергонасыщенных материалов и изделий»

по специализации «Технология энергонасыщенных материалов и изделий»

Квалификация выпускника: ИНЖЕНЕР

Выпускающая кафедра: «Технологии твердых химических веществ»

Кафедра-разработчик рабочей программы: «Общей химической технологии»

1. Цели освоения дисциплины

Целями освоения дисциплины «Общая химическая технология» являются:

- а) обучение методике проектирования технологии химических реакций различных технологических классов;
- б) обучение методологии проектирования XTC и ее элементов как последовательности действий анализ-синтез-оценка реализуемости;
- в) обучение методике проектирования химико-технологической системы;
- г) обучение методике анализа ХТС;
- д) формирование представления о необходимости интеграции закономерностей базисных наук в процессе проектирования технологии производства химического продукта.

2. Содержание дисциплины «Общая химическая технология»:

Понятийный аппарат химической технологии. Предмет курса, задачи, методология. Место ОХТ в системе подготовки химика-технолога. Основные термины и понятия.

Состав и структура химико-технологической системы. Основные подсистемы XTC. Операционная и управляющая системы. Технологическая схема. Принципиальная технологическая схема. Основное и вспомогательное оборудование технологической схемы. Единая система конструкторской документации (чертеж и спецификация оборудования технологической схемы).

Методы проектирования технологии в подсистеме химического превращения. Основные этапы разработки технологии. Технологический эксперимент. Решение многофакторных технологических задач. Разработка технологии простых и сложных, обратимых и необратимых реакций. Математическая модель процесса (аналитические и статистические модели). Термодинамические и кинетические факторы. Факторы и условия. Критерии оптимизации (конверсия, селективность, скорость реакции). Параметры технологического режима. Технологический регламент процесса. Современные способы интенсификации химического и массообменного процессов.

Основы промышленного катализа в гомогенных и гетерогенных средах. Классификация катализаторов. Механизм действия. Физические и химические свойства катализаторов. Активность, производительность, селективность. Старение, утомление, отравление катализаторов. Контактные яды. Требования, предъявляемые к промышленным катализаторам. Достоинства и недостатки гомогенных катализаторов. Перспективы развития гомогенного катализа. Металлокомплексный, мицеллярный, ферментативный и межфазный катализ. Сырьевые и энергетические ресурсы ХТС. Анализ сырьевой базы традиционного и нетрадиционного промышленного органического и неорганического синтезов. Проблемы разработки ресурсосберегающих технологий.

Проблемы экологизации XTC. Основные инженерные принципы создания безотходной и малоотходной технологии. Основные инженерные решения при разработке экотехнологических мероприятий в подсистеме химического превращения.

Методика поэтапного проектирования XTC.

Современные методы анализа систем. Понятие системного анализа. Оценка эффективности функционирования ХТС.

3. В результате освоения дисциплины обучающийся должен:

1) Знать:

- а) Основные функции инженера-технолога;
- б) основные понятия химической технологии;
- в) тенденции в развитии технологии химических и биохимических процессов;
- г) состав и структуру химико-технологических систем;
- д) закономерности протекания химических превращений в условиях промышленного производства;
- е) состояние и перспективы развития сырьевой и энергетической базы отрасли;
- ж) основную технологическую документацию;
- з) методику проектирования XTC;
- и) показатели эффективности химико-технологического процесса;
- к) источники научно-технологической информации в профессиональной сфере;

2) Уметь:

- а) разработать технологию химической реакции в ходе ее логического проектирования и постановки технологического эксперимента;
- б) обосновать режимы работы промышленного реактора для определенного класса реакций и предложить конструкцию аппарата, обеспечивающего заданный режим работы;
- в) проанализировать альтернативные виды сырья и обосновать его выбор;
- г) использовать современные способы интенсификации химических и физических процессов;
- д) синтезировать общую структуру технологической схемы производства химического продукта;
- е) рассчитать материальные и тепловые балансы химического производства для оценки нормативов материальных затрат (норм расхода сырья, полуфабрикатов, материалов, энергии);
- ж) дать технологическую, экологическую и экономическую оценку инженерного решения в области ХТС;
- з) использовать в работе основные принципы экологического проектирования на основе проведения энергетической и экологической экспертиз;
- и) применять новейшие достижения научно-технического прогресса;
- к) реализовать принцип непрерывного обучения на основе ФПК и анализа научно-технической информации;

3) Владеть:

в)

- а) методами математической статистики для обработки результатов активного и пассивного эксперимента;
- б) методами работы на ЭВМ для осуществления интернет-поиска специализированной информации.

Зав.каф.ТТХВ

Borost

В.Я.Базотов