Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Казанский национальный исследовательский технологический университет» (ФГБОУ ВО «КНИТУ»)

УТВЕРЖДАЮ

Проректор по УР

Бурмистров А.В. « 10 201 7 г.

РАБОЧАЯ ПРОГРАММА

По дисциплине <u>Б1.В.ДВ.12.1</u> «Системный анализ процессов химической технологии»
Направление подготовки 18.03.02 «Энерго- и ресурсосберегающие процессы
в химической технологии, нефтехимии и биотехнологии»
Профиль подготовки Рациональное использование материальных и энергетических
ресурсов
Квалификация выпускника Бакалавр
Форма обучения Очная
Институт, факультет Институт пищевых производств и биотехнологии
Факультет пищевых технологий
Кафедра-разработчик рабочей программы Системотехники
Курс, семестр 4 курс, 8 семестр

	Часы	Зачетные единицы
Лекции	18 / 9*	0,5 / 0,25*
Практические занятия		
Семинарские занятия		
Лабораторные занятия	36 / 27*	1 / 0,75*
Самостоятельная работа	54 / 72*	1,5 / 2*
Форма аттестации – Зачет		
Всего	108	3

^{* –} для набора 2015, 2016, 2017г.

Рабочая программа составлена с учетом требований Федерального государственного образовательного стандарта высшего образования (№ 227 от 12.03.2015) по направлению подготовки 18.03.02 «Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии» для профиля «Рациональное использование материальных и энергетических ресурсов» на основании учебных планов наборов обучающихся (2014—17 гг.)

Разработчик программы:		
Зав. кафедрой		Зиятдинов Н.Н.
(должность)	(подпись)	(Ф.И.О)
Рабочая программа рассмот	грена и одобрена на заседании кафедры	Системотехники
протокол от <u>19.09</u>		
Зав. кафедрой		Зиятдинов Н.Н.
	(подпись)	(Ф.И.О.)
СОГЛАСОВАНО		
Протокол заседания метод	ической комиссии факультета пищевых	технологий

Председатель комиссии, профессор

OT 21,09 2017 r. № 2

<u>Сироткин А.С.</u> (Ф.И.О.)

УТВЕРЖДЕНО

Протокол заседания методической комиссии института Управления, автоматизации и информационных технологий от 23.00 201₹г. № 3

Председатель комиссии, профессор

(подпись)

(подпись)

Зарипов Р.Н. (Ф.И.О.)

Нач. УМЦ, доцент

(подпись)

Китаева Л.А. (Ф.И.О.)

1. Цели освоения дисциплины

Целями освоения дисциплины <u>Системный анализ процессов химической техноло-</u>гии являются:

- а) формирование знаний о методах системного анализа процессов химической технологии;
- б) обучение технологии постановки задач, разработке и выбору методов системного анализа процессов химической технологии;
- в) обучение способам применения современных программных средств для решения задач системного анализа процессов химической технологии;
- г) раскрытие сущности процессов, происходящих при процедурах системного анализа процессов химической технологии.

2. Место дисциплины в структуре образовательной программы

Дисциплина <u>Б1.В.ДВ.12.1</u> Системный анализ процессов химической технологии относится к дисциплинам *по выбору* вариативной части ООП и формирует у бакалавров по направлению подготовки <u>18.03.02</u> «Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии» набор знаний, умений, навыков и компетенций.

Для успешного освоения дисциплины <u>Б1.В.ДВ.12.1</u> <u>Системный анализ процессов химической технологии</u> бакалавр по направлению подготовки <u>18.03.02</u> <u>«Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии» должен освоить материал предшествующих дисциплин:</u>

- а) Математика
- б) Информатика
- в) Физика
- г) Органическая химия
- д) Физическая химия
- е) Процессы и аппараты химической технологии
- ж) Общая химическая технология
- з) Вычислительная математика
- и) Техническая термодинамика и теплотехника

- к) Анализ и рациональное использование материальных и энергетических ресурсов в биотехнологии
 - л) Ресурсо- и энергосберегающие технологии
 - м) Методы оптимизации
 - н) Оптимизация химико-технологических процессов и систем.

Знания, полученные при изучении дисциплины <u>Б1.В.ДВ.12.1</u> <u>Системный анализ</u> <u>процессов химической технологии</u> могут быть использованы при прохождении производственной и преддипломной практик и выполнении выпускных квалификационных работ.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины

- 1. ПК-3 способностью использовать современные информационные технологии, проводить обработку информации с использованием прикладных программ и баз данных для расчета технологических параметров оборудования и мониторинга природных сред.
- 2. ПК-8 способностью использовать элементы эколого-экономического анализа в создании энерго- и ресурсосберегающих технологий.
- 3. ПК-11 способностью организовывать работу исполнителей, находить и принимать управленческие решения в области организации труда и осуществлении природоохранных мероприятий.
- 4. ПК-16 способностью моделировать энерго- и ресурсосберегающие процессы в промышленности.

В результате освоения дисциплины бакалавр должен:

- 1) Знать: а) содержание и основные положения системного анализа; основные понятия и определения, относящиеся к химико-технологической системе;
- б) теоретические основы методологии анализа, синтеза и оптимизации процессов химической технологии;
- в) принципы автоматизированного исследования и проектирования процессов химической технологии средствами современных программных средств.
- 2) Уметь: а) корректно ставить задачи анализа, оптимизации, проектирования процессов химической технологии;

- б) строить математическую модель исследуемого или проектируемого химикотехнологического процесса средствами универсальных моделирующих программ;
- в) анализировать полученные результаты с точки зрения адекватности рассматриваемому процессу химической технологии, давать рекомендации при принятии решений по совершенствованию химико-технологических процессов и систем.
- 3) Владеть: а) навыками применения методов и технологии системного анализа процессов химической технологии на практике;
- б) навыками применения современных программных средств для решения задач системного анализа процессов химической технологии.

4. Структура и содержание дисциплины Системный анализ процессов химической технологии

Общая трудоемкость дисциплины составляет 3 зачетные единицы, 108 часов.

			F	Виды учебі (в ча	ной работ асах)	Ы	
№ п/п	Раздел дисциплины	Семестр	Лекции	Семинар (Практиче-	Лабора- торные работы	СРС	Оценочные средства для проведения про- межуточной аттеста- ции по разделам
1	Основные положения системного анализа процессов химической технологии	8	16 / 8*			27 / 36*	Тестирование
2.	Моделирующие программные комплексы как инструментальные средства системного анализа процессов химической технологии	8	2 / 1*		36 / 27*	27 / 36*	Тестирование Контрольная ра- бота Защита лабора- торной работы
	ИТОГО:		18 / 9*		36 / 27*	54 / 72*	
	Форма аттестации						Зачет

^{* –} для набора 2015, 2016, 2017г.

5. Содержание лекционных занятий по темам с указанием формируемых компетенций и используемых инновационных образовательных технологий

№ п/п	Раздел дисциплины	Ча- сы	Тема лекционного занятия	Краткое содержание	Форми- руемые компе- тенции
1	Основные положения системного анализа процессов химической технологии	4 / 2*	Тема 1. Системный подход и общесистемные свойства и закономерности	Цель и содержание дисциплины. История теории систем. Содержание и основные положения системного анализа. Принципы системного анализа. Математическое моделирование как инструмент реализации системного подхода.	ПК-3, ПК-8, ПК-11, ПК-16
2		4 / 2*	Тема 2. Физико- химическая сис- тема. Химико- технологическая система	Понятие физико-химической системы. Особенности структуры физико-химической системы. Понятие химикотехнологической системы (ХТС). Структура химикотехнологической системы. Построение моделируемой схемы ХТС. Критерии эффективности ХТС. Свойства ХТС.	ПК-3, ПК-8, ПК-11, ПК-16

3		8 / 4*	Тема 3. Задачи исследования процессов химической технологии	Понятия анализа, оптимизации и синтеза ХТС. Математическая модель ХТС. Постановка задачи расчета ХТС. Задачи анализа ХТС. Структурный анализ разомкнутых ХТС. Структурный анализ и расчет замкнутых ХТС. Исследование системных связей и законов функционирования. Исследование чувствительности ХТС.	ПК-3, ПК-8, ПК-11, ПК-16
4	Моделирующие программные комплексы как инструментальные средства системного анализа процессов химической технологии	2 / 1*	Тема 4. Системный анализ процессов химической технологии средствами моделирующей программы	Обзор задач, решаемых при проектировании, управлении, исследовании и реконструкции химических производств. Состав и функции универсальных моделирующих программ. Краткий обзор УМП. Источники эффективности применения УМП.	ПК-3, ПК-8, ПК-11, ПК-16

^{*} – для набора 2015, 2016, 2017г.

6. Содержание семинарских, практических занятий (лабораторного практикума)

В учебном плане не предусмотрены.

7. Содержание лабораторных занятий

Цель проведения лабораторных занятий — освоение лекционного материала, касающегося методологии системного анализа процессов химической технологии, принципов математического моделирования химико-технологических процессов средствами универсальных моделирующих программ, а также выработка студентами определенных умений, связанных с принятием инженерных решений на основе полученных результатов моделирования, навыков работы в универсальных моделирующих программах.

№ п/п	Раздел дисциплины	Часы	Тема лабораторного занятия	Формируемые компетенции
1	Раздел 2. Модели-	4/3*	Тема 1. Компьютерное моделиро-	ПК-3, ПК-8,
	рующие про-		вание процессов химической тех-	ПК-11, ПК-16
	граммные ком-		нологии с помощью УМП	
2	плексы как инст-	4/3*	Тема 2. Моделирование установ-	ПК-3, ПК-8,
	рументальные		ки стабилизации газового кон-	ПК-11, ПК-16
	средства систем-		денсата	
3	ного анализа про-	4 / 3*	Тема 3. Моделирование установ-	ПК-3, ПК-8,
	цессов химической		ки стабилизации газового кон-	ПК-11, ПК-16
	технологии		денсата	
4		4/3*	Тема 4. Моделирование установ-	ПК-3, ПК-8,
			ки стабилизации газового кон-	ПК-11, ПК-16
			денсата	

5	4 / 3*	Тема 5. Контрольная работа № 1	ПК-3, ПК-8, ПК-11, ПК-16
6	4 / 3*	Тема 6. Моделирование установки синтеза аммиака	ПК-3, ПК-8, ПК-11, ПК-16
7	4/3*	Тема 7. Моделирование установки синтеза аммиака	ПК-3, ПК-8, ПК-11, ПК-16
8	4 / 3*	Тема 8. Моделирование установки синтеза аммиака	ПК-3, ПК-8, ПК-11, ПК-16
9	4/3*	Тема 9. Контрольная работа № 2	ПК-3, ПК-8, ПК-11, ПК-16

^{* –} для набора 2015, 2016, 2017г.

Лабораторные работы проводятся в помещении компьютерного класса кафедры с использованием 12 компьютеров с доступом в Интернет, презентационной техники (проектор, экран, компьютер/ноутбук), пакетов ПО общего назначения (текстовые редакторы, графические редакторы), специализированного ПО: УМП.

8. Самостоятельная работа бакалавра

№ п/ п	Темы, выносимые на самостоятельную работу	Ча- сы	Форма СРС	Форми- руемые компе- тенции
1	Тема 1. Системный подход и общесистемные свойства и закономерности	6 / 8*	Проработка теоретического материала. Написание конспекта по темам. Подготовка к тестированию.	ПК-3, ПК-8, ПК-11, ПК-16
3	Тема 2. Физико-химическая система. Химико-технологическая система	6 / 10*	Проработка теоретического материала. Написание конспекта по темам. Подготовка к тестированию.	ПК-3, ПК-8, ПК-11, ПК-16
4	Тема 3. Задачи исследования процессов химической технологии	15 / 18*	Проработка теоретического материала. Написание конспекта по темам. Подготовка к тестированию. Подготовка к лабораторным работам. Подготовка к контрольным работам.	ПК-3, ПК-8, ПК-11, ПК-16
5	Тема 4. Системный анализ процессов химической технологии средствами моделирующей программы	27 / 36*	Проработка теоретического материала. Написание конспекта по темам. Подготовка к собеседованию. Подготовка к лабораторным работам. Подготовка к контрольным работам.	ПК-3, ПК-8, ПК-11, ПК-16

^{* –} для набора 2015, 2016, 2017г.

9. Использование рейтинговой системы оценки знаний

При оценке результатов деятельности магистров в рамках дисциплины «Системный анализ процессов химической технологии» используется рейтинговая система. Рейтинго-

вая оценка формируется на основании текущего и промежуточного контроля. Максимальное и минимальное количество баллов по различным видам учебной работы описано в положении о рейтинговой системе.

Текущий контроль степени усвоения теоретического материала по дисциплине «Системный анализ процессов химической технологии» осуществляется после изложения теоретического материала каждой темы и организован как тестирование. Лабораторные занятия направлены на решение задач и обсуждение теоретического материала. Предусмотрены 2 контрольные лабораторные работы.

Промежуточная аттестация осуществляется в конце семестра и завершает изучение дисциплины. Форма аттестации — зачет.

При итоговой оценке используется рейтинговая система оценки знаний.

Максимальный рейтинг студента - 100 баллов, минимальный - 60 баллов.

Оценочные средства	Кол-во	Min, баллов	Мах, баллов
Лабораторная работа	7	35	56
Контрольная работа	2	10	20
Тестирование	3	15	24
Итого:		60	100

10. Информационно-методическое обеспечение дисциплины

10.1 Основная литература

При изучении дисциплины «Системный анализ процессов химической технологии» в качестве основных источников информации рекомендуется использовать следующую литературу.

Основные источники информации	Количество экземпляров
1. Островский Г.М. Оптимизация технических систем: учебное пособие / Островский Г.М., Зиятдинов Н.Н., Лаптева Т.В. – М.: Кнорус, 2012. – 421 с.	200 экз в УНИЦ КНИТУ
2. Натареев С.В. Системный анализ и математическое моделирование процессов химической	ЭБС «Лань» https://e.lanbook.com/book/4496
технологии: учебное пособие. – Изд-о: ИГХТУ, 2007. – 80 стр.	
3. Зиятдинов Н.Н. Системный анализ химико-	160 экз. в УНИЦ КНИТУ
технологических процессов с использованием программы ChemCad: Учебно-методическое пособие / Н.Н. Зиятдинов, Т.В. Лаптева, Д.А. Рыжов, Н.Ю. Богула. – Казань, КГТУ, 2009. – 212 с.	УНИЦ КНИТУ http://ft.kstu.ru/ft/978-5-7882-XXX-

10.2 Дополнительная литература

В качестве дополнительных источников информации рекомендуется использовать следующую литературу:

Дополнительные источники информации	Количество экземпляров
1. Дорохов, И.Н. Системный анализ процессов химической	31 экз. в УНИЦ КНИТУ
технологии. Интеллектуальные системы и инженерное твор-	
чество в задачах интенсификации химико-технологических	
процессов и производств / И.Н. Дорохов, В.В. Меньшиков;	
РАН, ин-т общ. и неорг. химии им Н.С. Курнакова. – М.:	'
Наука, 2005. — 582 c.	
2. Холоднов, В.А. Системный анализ и принятие решений.	3 экз. в УНИЦ КНИТУ
Математическое моделирование и оптимизация объектов	
химической технологии: учебное пособие / В.А. Холоднов [и	
др.]; Федерал. агентство по образов., ГОУ ВПО, СПб. гос.	
технол. ин-т (техн. ун-т). – СПб. : СПбГТИ (ТУ), 2007. – 340	
с.: ил.	
3. Островский Г.М. Методы оптимизации химико-	2 экз на кафедре СТ
технологических процессов: учебное пособие / Островский	
Г.М., Волин Ю.М., Зиятдинов Н.Н. – М.: КДУ, 2008. – 424 с.	
4. Гартман, Т.Н. Основы компьютерного моделирования хи-	200 экз. в УНИЦ КНИТУ
мико-технологических процессов. Учебное пособие для ву-	
зов / Т.Н. Гартман , Д.В. Клушнин. – М.: ИКЦ «Академкни-	
га», 2006. – 416 с.	
5. Зиятдинов, Н.Н. Математическое моделирование химико-	113 экз. в УНИЦ КНИТУ
технологических систем с использованием программы	30 экз. на кафедре СТ
ChemCad. Учебно-методическое пособие / Н.Н. Зиятдинов,	
Т.В. Лаптева, Д.А. Рыжов. – Казань, КГТУ, 2008. – 160 с.	

10.3 Электронные источники информации

При изучении дисциплины «Системный анализ процессов химической технологии» рекомендовано использование электронных источников информации:

- 1. Электронный каталог УНИЦ КНИТУ Режим доступа: http://ruslan.kstu.ru/
- 2. Электронная библиотека УНИЦ КНИТУ Режим доступа: http://ft.kstu.ru/ft/
- 3. ЭБС «Лань» Режим доступа: http://e.lanbook.com/books/

Согласовано:

Зав.сектором ОКУФ

федера жное госужественно, колжетное образовательное учрежение высшего образоватия и казанский имперементы казанский имперементы казанский имперементы учебко-научный имперементы информационный центр

11. Оценочные средства для текущего контроля успеваемости, промежу-точной аттестации по итогам освоения дисциплины

Оценочные средства для проведения текущего контроля успеваемости, промежуточной аттестации обучающихся разрабатываются согласно положению о Фондах оценочных средств, рассматриваются как составная часть рабочей программы и оформляются отдельным документом.

12. Материально-техническое обеспечение дисциплины (модуля).

1. Лекционные занятия:

- а. комплект электронных презентаций/слайдов,
- b. аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук).

2. Лабораторные занятия:

- а. компьютерный класс, оснащенный презентационной техникой (проектор, экран, компьютер/ноутбук),
- b. рабочие места студентов, оснащенные компьютерами с доступом в Интернет, на компьютерах должны быть установлены ПО общего назначения (пакет Microsoft Office) и универсальная моделирующая программа.
- с. рабочее место преподавателя, оснащенное компьютером с доступом в Интернет,

13. Образовательные технологии

Удельный вес занятий по дисциплине «Системный анализ процессов химической технологии», проводимых в интерактивных формах, составляет $16 / 14^*$ часов практических занятий, что составляет $30 / 39^*$ % от аудиторной нагрузки (* — для набора 2015, 2016, 2017г.).

Основные интерактивные формы проведения учебных занятий:

- изучение и закрепление нового материала на интерактивной лекции (лекциябеседа, лекция-дискуссия),
- компьютерные симуляции,
- работа в команде.

Лист переутверждения рабочей программы

ur	Рабочая програм Шенез произес	coo m	ullivecice	ru mes	cuouru	<u></u>	
	(наименование дисциплины) пересмотрена на заседании кафедры						
№ п/п	Дата переутверждения РП (протокол заседания кафедры № от . 20)	Наличие изменений	Наличие изменений в списке литературы	Подпись разработ- чика РП	Подпись заведующего кафедрой	Подпись начальника УМЦ/ОМг/О АиД	
1	Nº10m 3.09.2018	hus	tes	3	7	Maury	
						/10 /	
	0						
					57		