Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Казанский национальный исследовательский технологический университет» (ФГБОУ ВО «КНИТУ»)

РАБОЧАЯ ПРОГРАММА

По дисциплине <u>Б1.В.ОД.13</u> «Электрохимические технологии»							
Направление подготовки 18.03.01 «Химическая технология»							
Профиль подготовки <u>Технология электрохимических производств</u>							
Квалификация (степень) выпускника бакалавр							
Форма обучения очная							
Институт, факультет Институт нефти, химии и нанотехнологий,							
факультет химических технологий							
Кафедра-разработчик рабочей программы «Технология электрохимических							
п <u>роизводств»</u>							
Курс, семестр 3 курс (6 семестр), 4 курс (7 семестр)							

	Ча	сы	Зачетные единицы		
	3 курс	4 курс	3 курс	4 курс	
Лекции	36	36	1,00	1,00	
Практические занятия	-	-	_	-	
Семинарские занятия	-	-	-	-	
Лабораторные занятия	45	45	1,25	1,25	
Самостоятельная работа	36	63	1,00	1,75	
Контроль	27	36	0,75	1,00	
Форма аттестации:	экзамен	экзамен			
Курсовой проект					
Всего	144	180	4	5	

Рабочая программа составлена с учетом требований Федерального государственного образовательного стандарта высшего образования 1005 от 11.08.2016

(номер, дата утверждения)

18.03.01 – Химическая технология по направлению (шифр, наименование) по профилю Технология электрохимических производств (наименование) в соответствии с учебным планом, утвержденным 04.06.2018, протокол № 7 (дата, год) для набора обучающихся 2016, 2017, 2018 года Разработчик программы: И.О. Григорьева доцент (О.И.Ф) (должность) (подпись) Рабочая программа рассмотрена и одобрена на заседании кафедры ТЭП, протокол от «03» сентября 2018 г. № 69-7/18 Зав. кафедрой ТЭП А.Ф. Дресвянников (О.И.Ф) (подпись)

УТВЕРЖДЕНО

Протокол заседания методической комиссии факультета или института, к которому относится кафедра-разработчик РП от «06» сентября 2018 г., протокол N 1

Председатель комиссии, доцент

(подпись)

Начальник УМЦ

(подпись)

(подпись)

(подпись)

(подпись)

(подпись)

(подпись)

(Ф.И.О.)

1. Цели освоения дисциплины

Целями освоения дисциплины «Электрохимические технологии» являются:

- а) формирование представлений о многообразии технологических применений электрохимических явлений и процессов;
- б) формирование представлений о единстве подхода к электрохимическим объектам вне зависимости от конкретных технологических применений;
- в) ознакомление с теоретическими и физико-химическими основами электрохимических процессов и явлений, направленных на получение различных химических веществ, металлов, гальванических покрытий, материалов, а также на производство энергии;
- г) обучение технологиям получения металлов, покрытий, неорганических и органических веществ электрохимическими методами;
 - д) обучение принципам разработки и управления технологическими процессами;
- е) овладение навыками самостоятельной работы и применения теоретических знаний к решению практических и исследовательских задач;
- ж) приобретение навыков составления технологических схем, включающих функциональные объекты, электрические и гидравлические соединения;
- з) приобретение первичных навыков разработки и управления технологическими процессами в области прикладной электрохимии.

2. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Б1.В.ОД.13 «Электрохимические технологии» относится к вариативной части ОП и формирует у бакалавров по направлению подготовки 18.03.01 — «Химическая технология» (профиль «Технология электрохимических производств») набор знаний, умений, навыков и компетенций, необходимых для выполнения научно- исследовательского, производственно-технологического, организационно-управленческого, проектного видов деятельности, например, конкретной научно-исследовательской работы, информационного поиска по предмету исследования и т.д.

Для успешного освоения дисциплины «Электрохимические технологии» бакалавр по направлению подготовки 18.03.01 – «Химическая технология» (профиль «Технология электрохимических производств») должен освоить материал следующих предшествующих дисциплин:

- 1) Б1.Б.6 Математика;
- 2) Б1.Б.8 Физика;
- 3) Б1.Б.10 Общая и неорганическая химия;
- 4) Б1.В.ОД.З Дополнительные главы неорганической химии. Химия элементов;
- 5) Б1.Б.11 Органическая химия;
- 6) Б1.Б.12 Физическая химия;
- 7) Б1.В.ОД.4 Дополнительные главы физической химии;
- 8) Б1.Б.13 Аналитическая химия и физико-химические методы анализа;
- 9) Б1.В.ОД.6 Физико-химические методы анализа
- 10) Б1.Б.14 Коллоидная химия
- 11) Б1.Б.19 Общая химическая технология
- 12) Б1.Б.20 Процессы и аппараты химической технологии;
- 13) Б1.В.ОД.10 Техническая термодинамика и теплотехника;
- 14) Б1.В.ОД.12 Теоретическая электрохимия.

В таблице 1 представлены темы предшествующих дисциплин, которые необходимо изучить студенту-бакалавру для успешного освоения материалов дисциплины «Электрохимические технологии»

Таблица 1 – Дисциплины и их темы, используемые при изучении дисциплины

Индекс и наименование дисциплины по учебному плану	Перечень тем
Б1.Б.6 Математика	Элементы теории функций и функционального анализа, Дифференциальные уравнения; вероятность и статистика: элементарная теория вероятностей, математические основы теории вероятностей
Б1.Б.8 Физика	Три начала термодинамики, термодинамические функции состояния, фазовые равновесия и фазовые превращения, электричество и магнетизм: электростатика и магнетостатика в вакууме и веществе
Б1.Б.10 Общая и неорганическая химия Б1.В.ОД.3 Дополнительные главы неорганической химии. Химия элементов	Растворы электролитов; равновесия в растворах; окислительно-восстановительные реакции; протолитическое равновесие; гидролиз солей; скорость химических реакций
Б1.Б.11 Органическая химия	Классификация, строение и номенклатура органических соединений; классификация органических реакций
Б1.Б.12 Физическая химия Б1.В.ОД.4 Дополнительные	Основы химической термодинамики, термодинамические функции, химический
главы физической химии	потенциал и общие условия равновесия систем
Б1.Б.13 Аналитическая химия и	Физико-химические методы анализа:
физико-химические методы анализа	оптические методы анализа,
Б1.В.ОД.6 Физико-химические	электрохимические методы анализа. Сущность методов, область применения
методы анализа	методов, область применения
Б1.Б.19 Процессы и аппараты	Классификация основных аппаратов
химической технологии	химической технологии, принцип их
	функционирования, сущность протекающих в них физико-химических процессов
Б1.Б.14 Коллоидная химия	Термодинамика поверхностных явлений; адсорбция, смачивание, капиллярные явления (адсорбция на гладких поверхностях и пористых адсорбентах, капиллярная конденсация); адгезия и смачивание; поверхностно-активные вещества;

Законы термодинамики
Электрохимические системы, классификация
электродов и электродных реакций; законы
Фарадея; электродные потенциалы. Механизмы
образования и строение двойного
электрического слоя

Дисциплина «Электрохимические технологии» является предшествующей и необходима для успешного усвоения последующих дисциплин:

- 1) Б1.В.ОД.14 Ресурсосбережение и экологическая безопасность электрохимических производств;
- 2) Б1.В.ОД.16 Материаловедение и защита от коррозии;
- 3) Б1.В.ДВ.8 Электрофизические методы обработки материалов;
- 4) Б1.В.ДВ.9 Методы и алгоритмы электрохимических систем;
- 5) Б1.В.ДВ.10 Методы исследования электрохимических процессов;
- 6) Б1.В.ДВ.11 Электрохимические нанотехнологии;
- 7) Б1.В.ДВ.12 Оборудование и основы проектирования электрохимических систем.

Знания, полученные при изучении дисциплины «Электрохимические технологии» могут быть использованы при прохождении производственной и преддипломной практики, в научно-исследовательской деятельности, при выполнении курсовых проектов (работ), а также выпускных квалификационных работ по направлению подготовки 18.03.01 — «Химическая технология» по профилю «Технология электрохимических производств».

3. Компетенции обучающегося, формируемые в результате освоения дисциплины «Электрохимические технологии»

В результате освоения дисциплины «Электрохимические технологии» бакалавр, обучающийся по направлению 18.03.01 — «Химическая технология» по профилю «Технология электрохимических производств» должен обладать следующими профессиональными компетенциями:

- 1) ПК-1 способностью и готовностью осуществлять технологический процесс в соответствии с регламентом и использовать технические средства для измерения основных параметров технологического процесса, свойств сырья и продукции;
- 2) ПК-4 способностью принимать конкретные технические решения при разработке технологических процессов, выбирать технические средства и технологии с учетом экологических последствий их применения;
- 3) ПК-10 способностью проводить анализ сырья, материалов и готовой продукции, осуществлять оценку результатов анализа;
- 4) ПК-11 способностью выявлять и устранять отклонения от режимов работы технологического оборудования и параметров технологического процесса;
- 5) ПК-20 готовностью изучать научно-техническую информацию, отечественный и зарубежный опыт по тематике исследования.

В результате освоения дисциплины обучающийся должен

знать:

- основные физико-химические процессы, лежащие в основе электрохимических явлений;
- основные технологические применения электрохимических явлений и процессов в промышленности;
- основные понятия в области электрохимических процессов и технологий;
- основные электрохимические объекты, их характерные особенности и принципы функционирования;
- основные методы разработки электролитов и технологических режимов процесса;
- основные методы измерения и контроля технологических параметров процесса;

уметь:

- наладить экспериментальную установку и проводить в лабораторных условиях электролиз водных растворов с целью получения химических веществ, металлов и покрытий;
- проводить анализ технологического процесса получения металлов, покрытий, химических продуктов электролизом;
- осуществлять выбор вида и толщины металлопокрытия по назначению и условиям его эксплуатации, электролита и технологического режима его нанесения;
- проводить информационный поиск в рамках поставленной исследовательской задачи;
- применять методы и средства познания для интеллектуального развития, повышения культурного уровня и профессиональной компетентности.

владеть:

- практическими навыками работы на экспериментальном оборудовании;
- методиками проведения электрохимических исследований и измерений основных параметров процесса и характеристик получаемого и/или исследуемого объекта;
- навыками оценки и анализа технологического процесса и работы оборудования;
- навыками обработки эмпирических и экспериментальных данных и оформления результатов исследования;
- навыками поиска и обработки информации по отдельным задачам производства.

4. Структура и содержание дисциплины «Электрохимические технологии»

Общая трудоемкость дисциплины составляет 9 зачетных единиц, которые распределяются по семестрам следующим образом: 6-й семестр - 4 зачетные единицы, 7-й семестр - 5 зачетных единиц. Общее количество часов - 324, из них 6-й семестр - 144 часа, 7-й семестр -180 часов.

Распределение учебного времени по видам занятий (лекции, лабораторные работы, самостоятельная работа студента) в рамках изучения дисциплины Б1.В.ОД.13 «Электрохимические технологии» представлено в таблице 2.

Таблица 2 — Распределение учебного времени по видам занятий в рамках дисциплины «Электрохимические технологии»

№ п/п	Раздел дисциплины	Семестр	Виды учебной работы (в часах)		Информационные и другие образовательные технологии, используемые при осуществлении	Оценочные средства для проведения промежуточной аттестации по разделам		
		\mathcal{C}	Лек- ции	Семи-	Лабора- торные работы	CP*	образовательного процесса	
1	Введение в дисциплину. Основные понятия электрохимической технологии	6	4	-	-	10	Работа с литературой, Интернет-ресурсами, беседа	Доклад, презентация, реферат**
2	Теоретические основы электрохимической технологии	6	4	-	-	6	Работа с литературой, Интернет-ресурсами, беседа, дискуссия	Тестирование, доклад, презентация, реферат отчет по лабораторным работам
3	Электрохимические технологии в производстве в неорганических и органических веществ в	6	16	-	12	10	Работа с литературой, Интернет-ресурсами, беседа, дискуссия	Тестирование, доклад, презентация, реферат отчет по лабораторным работам, контрольная работа
4	Электрохимические технологии защиты от коррозии объектов техники	6	12		33	10	Работа с литературой, Интернет-ресурсами, беседа, дискуссия	Тестирование, доклад, презентация, реферат отчет по лабораторным работам, контрольная работа
	Итого 6-й семестр		36		45	36		
5	Электрохимическая металлургия	7	14	-	18	22	Работа с литературой, Интернет-ресурсами, беседа, дискуссия	Тестирование, доклад, презентация, реферат отчет по лабораторным работам, контрольная работа
6	Электрохимические технологии в производстве изделий, приборов, машин.	7	14	-	18	22	Работа с литературой, Интернет-ресурсами, беседа, дискуссия	Тестирование, доклад, презентация, реферат отчет по лабораторным работам, контрольная работа
7	Электрохимическая энергетика	7	8	-	9	19	Работа с литературой, Интернет-ресурсами, беседа, дискуссия	Тестирование, доклад, презентация, реферат, отчет по лабораторным работам
	Итого 7-й семестр		36		45	63		
	Всего		72		90	99		
Форм	а аттестации *CP самостоя						_	Экзамен

^{*}СР – самостоятельная работа студента

^{**}Студент пишет один реферат по выбору из разделов дисциплины

5. Содержание лекционных занятий по темам с указанием формируемых компетенций и используемых инновационных образовательных технологий.

No	Раздел	Часы	Тема лекционного	Краткое содержание	Формиру
п/	дисциплины		занятия		емые
П					компетен
	Введение в	2	Тема 1. Содержание, цели, задачи и научные	Этапы развития электрохимической технологии как науки. Классификация электрохимических производств. Преимущества и недостатки	ции ПК-1 ПК-20
1	дисциплину. Основные понятия электрохимической		основы курса Лекция визуализация	электрохимических технологических процессов. Классификационные признаки электрохимических систем и объектов. Цели и задачи курса.	
	технологии	2	Тема 2. Основные определения и понятия курса Лекция пресс-конференция	Электрохимические объекты, явления, устройства. Параметры электрохимических устройств. Определение наиболее общих понятий и терминов. Законы сохранения энергии и их использование при практических расчетах. Экологические проблемы электрохимических производств.	ПК-1 ПК-20
2	Теоретические основы электрохимической	2	Тема 3. Электрохимические объекты и устройства Лекция визуализация	Схема электрохимического объекта и явления. Классификация и характеристики электродов: плоский монолитный, перфорированный, пористый жалюзийный, композиционный, углеволокнистый, жидкометаллический. Параметры, режимы работы электрохимических устройств. Диафрагмы, сепараторы, ионоселективные мембраны.	ПК-4 ПК-20
	технологии	2	Тема 4. Электрохимические процессы Лекция визуализация	Скорость и селективность электрохимических процессов. Расход электроэнергии на единицу вырабатываемой продукции. Баланс напряжений. Учет режимов протекания процессов, пассивации, введения ингибиторов, питтингового растворения, транспассивности.	ПК-1 ПК-4 ПК-20
		2	Тема 5. Теоретические основы процесса электролитического разложения воды Лекция-беседа	Основы процесса электролиза воды. Реакции на электродах. Диаграмма Пурбэ. Электрические характеристики процесса электролиза воды. Баланс напряжения на ванне электролиза воды, его составляющие. Тепловой баланс электролизера.	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
	Электрохимические технологии в производстве неорганических и органических веществ	2	Тема б. Технология производства водорода Лекция визуализация	Область применения и способы получения водорода. Обоснование выбора состава раствора, электродных материалов. Влияние различных параметров на процесс электролиза. Электролиз воды под давлением.	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
3		2	Тема 7. Электролизеры для производства водорода Лекция пресс-конференция	Традиционные электролизеры, принцип работы. Конструкции электролизеров, работающих при атмосферном давлении и при избыточном давлении. Монополярные и биполярные электролизеры. Утечка тока: причина появления, технологические приемы по устранению.	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
		2	Тема 8. Физико-химические основы производства хлора и щелочи Лекция визуализация	Область применения хлора и щелочи. Электрохимическое производство хлора, щелочи. Сырье. Теоретические основы электролиза хлоридов натрия и калия. Материальный и тепловой баланс электролизера. Технологические схемы хлорного завода.	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
		2	Тема 9. Технологии производства хлора и щелочи Лекция-беседа	Три типа электролизеров: сходство и различия, электродные процессы и продукты. Критерии выбора схемы электролиза. Электролиз: катодные и анодные процессы, электроды, контакты. Принцип выбора электродных материалов.	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20

	,				
		2	Тема 10. Электролизеры для производства водорода хлора и щелочи Лекция-беседа	Электролиз с твердым катодом и фильтрующей диафрагмой. Электролиз с ионообменной (катионообменной) мембраной, особенности переноса ионов. Электролиз с ртутным катодом, механизм разложения амальгамы. Технологические схемы производства. Условия электролиза (плотность тока, составы растворов, температура), электродные материалы, диафрагма Конструкции современных электролизеров и разлагателей.	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
		2	Тема 11. Интенсификация процессов получения хлора и щелочи Лекция пресс- конференция	Основные направления развития. Выбор электролит и подготовка его к работе. Требования к катодам, контактам, диафрагмам,материалу анодов. Малоизнашиваемые аноды: классификация, свойства, преимущества. Платиново-титановые, титано-рутениевые аноды.	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
		2	Тема 12. Перспективы развития технологий получения водорода, хлора и щелочи Пекция пресс-конференция	Основные направления и перспективы развития. Организация производства. Электроды: материал, конструкция, способ включения. Пути снижения электродного перенапряжения. Укрупнение мощности электролизеров. Повышение экономичности, снижение энергетических затрат. Способы уменьшения затрат электроэнергии.	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
		2	Тема 13. Классификация гальванических покрытий Лекция визуализация	Различные виды классификации покрытий: по характеру защиты, назначению и т.д. Металлические, неметаллические, защитные, защитно-декоративные, функциональные, многослойные, композиционные покрытия. Классификация функциональных покрытий.	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
		2	Тема 14. Альтернативные способы нанесения покрытий Лекция визуализация	Альтернативные способы нанесения покрытий: сущность, область применения. Преимущества и недостатки гальванического метода. Выбор состава и назначение основных компонентов электролита. Механизм процесса кристаллизации.	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
		2	Тема 15. Теоретические основы гальванотехники Проблемная лекция	Классификация процессов гальванотехники с помощью поляризационных диаграмм. Виды гальванических покрытий (характер защиты, химическая природа, площадь покрытия на поверхности детали) и способы их формирования. Структура и свойства гальванических осадков, влияние перенапряжения.	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
4	Электрохимические технологии защиты от коррозии объектов техники	2	Тема 16. Теория и практика электроосаждения металлов и сплавов Лекция визуализация	Технологии нанесения гальванических и химических покрытий. Механические, химические и электрохимические методы подготовки поверхности перед нанесением покрытий: критерии выбора. Тип и характер токоподвода. Подвески, барабаны, колокола, специальные оправки.	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
		2	Тема 17. Рассеивающая способность электролитов Проблемная лекция	Распределение тока (первичное и вторичное) и металла по поверхности катода, влияние различных факторов. Рассеивающая и кроющая способность электролита, поляризуемость электрода. Влияние зависимости выхода по току от плотности тока на распределение металла. Приемы улучшения равномерности распределения покрытия по толщине.	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
		2	Тема 18. Методы оценки рассеивающей способности электролитов Проблемная лекция	Методы изучения распределения тока: графические, построения электрического поля, электрохимические. Методы опытного изучения распределения тока и металла и моделирующие ячейки: Хэринга и Блюма, Хорша и Фува, Кудрявцева и Никифоровой, Гюйса (разборный катод), щелевая ячейка Молера. Количественная оценка рассеивающей способности.	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20

		2	Тема 19. Основы	Теоретические основы электрохимических процессов в производстве металлов электролизом	ПК-1 ПК-4
			гидроэлектро- металлургических процессов Лекция визуализация	водных растворов. Общая схема получения металлов гидроэлектрометаллургическим методом. Обогащение, обжиг руд, выщелачивание: сущность процессов, аппараты. Очистка растворов, методы разделения компонентов.	ПК-10 ПК-11 ПК-20
		2	Тема 20. Электролиз водных растворов Лекция-беседа	Принципиальная схема и параметры процессов электролитического рафинирования и электроэкстракции. Показатели, продукты, особенности катодных и анодных процессов при получении металлов электролизом. Конструкции и принцип работы электролизеров.	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
		2	Тема 21. Гидроэлектро- металлургия меди Лекция визуализация	Область применения меди. Общая схема процесса. Состав анодной и катодной меди. Процессы на электродах и в электролите. Поведение примесей меди. Электролит, катоды и аноды, показатели процесса, баланс напряжений при рафинировании меди.	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
5	Электрохимическая металлургия	2	Тема 22. Электроэкстракция меди Лекция визуализация	Схема электроэкстракции меди. Особенности электролиза, катодные и анодные реакции, вредные примечи. Основные показатели электролиза и баланс напряжения ванны электролитической экстракции меди.	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
		2	Тема 23. Электролитическое рафинирование никеля Лекция визуализация	Сульфидные и оксидные руды. Схема переработки медно-никелевых руд. Состав анодного и катодного никеля. Основы и особенности электрохимического рафинирования никеля. Составы электролитов, катодные и анодные процессы. Примеси в анодах, очистка электролитов. Показатели электролиза и баланс напряжения.	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
		2	Тема 24. Электроэкстракция цинка Лекция визуализация	Схема пирометаллургического и гидроэлектро- ометаллургического способа получения цинка. Обжиг, выщелачивание, очистка растворов, электролиз. Катодный процесс, вредное действие катодных примесей, мероприятия по их снижению. Анодный процесс, анодные примеси. Технологические показатели, баланс напряжений.	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
		2	Тема 25. Интенсификация процессов гидроэлектрометаллургии Лекция визуализация	Основные направления и перспективы развития. Пути интенсификации процессов гидроэлектрометаллургии и технологий получения чистых металлов и порошков металлов. Электролиз: выбор состава электролита, режимных параметров, способа проведения процесса.	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
6	Электрохимические технологии нанесения покрытий и в производстве изделий, приборов, машин	2	Тема 26. Электрохимические технологии цинкования и никелирования Лекция прессконференция	Гальванические покрытия цинком, никелем. Физико-химические и физико-механические свойства, основные области применения покрытий. Основные электролиты для нанесения цинковых и никелевых покрытий. Сравнительные характеристики технологических свойств электролитов и качество получаемых покрытий.	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
		2	Тема 27. Электрохимические технологии меднения, хромирования, железнения Лекция-беседа	Современные технологии меднения, хромирования, железнения. Свойства, области применения покрытий и основные электролиты для их нанесения. Сравнительные характеристики технологических свойств электролитов и качество получаемых покрытий.	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
		2	Тема 28. Электрохимические технологии сплавообразования <i>Лекция-беседа</i>	Условия и закономерности совместного разряда ионов металлов. Влияние различных факторов на совместный разряд, состав, структуру и свойства сплава. Сплавы на основе меди, олова, хрома, никеля.	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20

			Тема 29.	Неметаллические неорганические покрытия.	ПК-1
			Конверсионные	Химическое и электрохимическое пассивирование	ПК-4
		2	покрытия	(хроматирование) металлических покрытий.	ПК-10
			Лекция-беседа	Фосфатирование сталей и цветных металлов.	ПК-11
	-		,	Механизм, особенности, показатели процессов.	ПК-20
			Тема 30.	Назначение процессов оксидирования. Механизм	ПК-1
			Оксидирование	возникновения и роста пленки при химическом и	ПК-4
		2	металлов	анодном оксидировании. Анодирование алюминия	ПК-10
			Лекция пресс-	и его сплавов. Механизм образования анодной	ПК-11
	Электрохимические		конференция	пленки. Влияние состава электролита и напряжения	ПК-20
	технологии			процесса на структуру пористой оксидной пленки.	
6	нанесения	2	Тема 31.	Механизм осаждения каталитических и	ПК-1
	покрытий,		Технологии	автокаталитических покрытий. Влияние природы	ПК-4
	в производстве		химических покрытий	восстановителя (органические и неорганические	ПК-10
	изделий, приборов,		Лекция визуализация	вещества) на процесс восстановления металлов и	ПК-11
	машин		, , , ,	свойства покрытий. Микрораспределение при	ПК-20
				осаждении химических покрытий.	
			Тема 32.	Электрохимические технологии формообразования,	ПК-1
			Электрохимические	размерной обработки, электрополирования	ПК-4
		2	технологии обработки	металлов. Принцип методов, область применения,	ПК-10
			поверхности	механизм, состав электролита, режим и условия	ПК-11
			Лекция-беседа	электролиза. Конструкции электрохимических	ПК-20
			,	станков. Технологии электрополирования стали,	
				меди, медных сплавов.	
		2	Тема 33.	Конструкции и характеристики ХИТ: ЭДС,	ПК-1
			Теоретические	напряжение разомкнутой цепи, вольт-амперная	ПК-4
			основы химических	характеристика, внутреннее сопротивление,	ПК-10
			источников тока	разрядные кривые, мощность, емкость, энергия,	ПК-11
			Лекция визуализация	саморазряд, технический ресурс. Активные	ПК-20
				вещества, электролиты, сепараторы.	
				Гальванические элементы, Аккумуляторы.	ПК-1
		2	Тема 34.	Топливные элементы. Основные мировые	ПК-4
			Классификация ХИТ	производители ХИТ. Потребительские свойства	ПК-10
			Лекция визуализация	электрохимические системы и основные процессы в	ПК-11
7	Электрохимическая			ХИТ. Примеры конструктивных решений ХИТ.	ПК-20
	энергетика			Контроль состояния ХИТ перед установкой.	
				Свинцовые аккумуляторы. Теоретические основы	ПК-1
			Тема 35.	токообразующих процессов. Характеристики.	ПК-4
		2	Технология	Конструкции пластин и батарей. Условия	ПК-10
			аккумуляторов	эксплуатации свинцовых аккумуляторов. Никель-	ПК-11
			Лекция визуализация	железные (НЖ) и никель-кадмиевые (НК)	ПК-20
				аккумуляторы, условия их эксплуатации.	
		_		Теоретические основы токообразующих процессов	ПК-1
			Тема 36.	в МЦ-элементах с солевым и щелочным	ПК-4
		2	Технология	электролитами. Резервные ХИТ. Принцип действия	ПК-10
			гальванических	ХИТ, активируемых растворами кислот или	ПК-11
			элементов	щелочей. ХИТ с литиевыми анодами. Топливные	ПК-20
			Лекция визуализация	элементы. Конструкции, принцип действия,	
				характеристики, достоинства, недостатки	
				гальванических элементов.	
				1 wildenin 100kiik olielii 100.	

6. Содержание семинарских, практических занятий

Учебным планом по направлению 18.03.01 - «Химическая технология» по профилю «Технология электрохимических производств» проведение практических занятий по дисциплине «Электрохимические технологии» не предусмотрено.

7. Содержание лабораторных занятий

Учебным планом по направлению 18.03.01 - «Химическая технология» по профилю «Технология электрохимических производств» предусмотрено проведение лабораторных занятий по дисциплине «Электрохимические технологии». Цель проведения лабораторных занятий – освоение лекционного материала, экспериментальное подтверждение и проверка основных теоретических положений электрохимических технологий (получение товарных продуктов, обработка и модификация изделий, производство энергии), а также выработка определенных умений и навыков, связанных с подготовкой экспериментальной установки, выбором режимов проведения электрохимического процесса и методик исследования, оценкой качества получаемых продуктов. Таким образом, основная цель лабораторного практикума научить обучающегося самостоятельно c первых шагов профессиональной деятельности решать конкретные практические задачи.

В ходе выполнения конкретной задачи студенту необходимо ознакомиться, в дополнение к описанию, с литературой по теме работы, самостоятельно провести эксперимент и синтез, идентификацию и исследование свойств полученных веществ или материалов. Как правило, выполнение одной задачи поручается двум-четырем студентам. Каждая лабораторная работа завершается обработкой экспериментальных результатов, написанием отчета и докладом по результатам работы. Конкретное содержание лабораторных занятий и формируемые компетенции представлены в таблице 3.

Таблица 3 — Содержание лабораторных занятий и формируемые компетенции по дисциплине «Электрохимические технологии»

№ п/п	Раздел дисциплины	Часы	Наименование лабораторной работы [*]	Краткое содержание	Формир уемые компете нции
1	Введение в дисциплину. Основные понятия электрохимической технологии	-	-	-	-
2	Теоретические основы электрохимической технологии	-	1	-	-
3	Электрохимические технологии в производстве неорганических и органических веществ	6	Баланс напряжения монополярной ванны электролиза воды	Изучение влияние плотности тока и материалов электродов на баланс напряжения ванны электролиза воды, коэффициент газонаполнения электролита, расход электроэнергии. Сравнение экспериментальных и расчетных данных.	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
		6	Баланс напряжения и утечка тока в биполярной ванне электролиза воды	Влияние плотности тока и размера зазора между электродом и дном электролизера на баланс напряжения биполярной ванны. Определение утечки тока графическим методом.	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
4	Электрохимические технологии защиты от коррозии объектов техники	5	Электрохимическое цинкование	Изучение влияния состава электролита и плотности тока на качество покрытий и выход по току металла. Установление верхних пределов допустимой плотности тока. Оценка вредного влияния примесей в электролите на качество покрытия. Снятие	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20

				поляризационных кривых. Баланс	
				напряжения на ванне.	
		5	Электрохимическое меднение	Изучение влияния состава электролита и режима электролиза на выход по току меди, качество и физико-химические свойства медных покрытий. Изучение влияния толщины на пористость и защитную способность медного покрытия. Снятие поляризационных кривых. Баланс напряжения на ванне.	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
		5	Электрохимическое никелирование	Исследование влияния кислотности и плотности тока на качество (по внешнему виду) никелевого покрытия и выход по току никеля. Изучение влияния вредных примесей меди и цинка на качество покрытия. Снятие поляризационных кривых. Баланс напряжения на ванне.	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
		6	Оценка рассеивающей способности электролитов	Определение рассеивающей способности электролитов различными методами: электролиз в ячейках Хулла, Хэринга и Блюма, графический и расчетный способы. Влияние плотности тока на рассеивающую способность и качество покрытия.	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
		4	Электрохимическое осаждение сплавов олова	Изучение процесса электроосаждения сплавов олово-никель, олово-свинец. Определение условий совместного осаждения металлов. Изучение влияния факторов (состав и концентрация электролита, режимные параметры электролиза) на состав и свойства получаемых сплавов.	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
		4	Химическое осаждение никеля	Исследование скорости процесса химического никелирования в зависимости от покрываемого металла, состава раствора, рН и температуры. Определение стабильности раствора в различных условиях проведения эксперимента.	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
		4	Химическое осаждение меди	Ознакомление с процессом осаждения меди путем химического восстановления. Изучение влияния типа лиганда и рН раствора на скорость осаждения меди и качество покрытия.	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
5	Электрохимическая металлургия	6	Электрохимическое получение цинка	Изучение влияния состава электролита, материала анода и плотности тока на параметры электролиза: выход цинка по току, качество осадка, напряжение на ванне, расход электроэнергии. Оптимизация условий электролиза. Баланс напряжения на ванне.	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
		6	Электрохимическое рафинирование меди	Изучение влияния концентрации серной кислоты, примесей в электролите, катодной и анодной плотностей тока на основные параметры электролиза: напряжение на ванне, удельный расход электроэнергии, выход меди по току, качество осадка. Баланс напряжения на ванне.	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20

6	Электрохимические	6	Электрохимическое рафинирование никеля Хроматирование	Изучение влияния температуры, состава и концентрации примеси в электролите, катодной плотности тока на параметры электролиза: напряжение на ванне, удельный расход электроэнергии, выход никеля по току, качество осадка. Баланс напряжения на ванне. Ознакомление с технологией	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
	технологии нанесения покрытий, в производстве изделий, приборов, машин	7	металлов и металлических покрытий.	хроматирования цинковых и никелевых покрытий, хроматного пассивирования меди. Влияние состава и концентрации раствора, условий процесса на качество хроматного покрытия.	ПК-4 ПК-10 ПК-11 ПК-20
		4	Фосфатирование стали и цинка.	Изучение влияния состава и концентрации раствора, условий процесса (продолжительность, температура) на качество фосфатного покрытия, его удельную массу и коррозионную стойкость.	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
		4	Технологии оксидирования металлов	Изучение влияния состава и концентрации раствора, условий процесса (плотность тока продолжительность, температура) на качество оксидного покрытия, его удельную массу, толщину и коррозионную стойкость.	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
		6	Анодирование алюминия	Ознакомление с технологией анодного оксидирования алюминия, уплотнением и окрашиванием оксидной пленки. Исследование влияния режима электролиза (количество прошедшего электричества, температура) на свойства оксидной пленки (удельная масса, пористость, толщина, выход по току, коррозионная стойкость).	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
7	Электрохимическая энергетика	5	Исследование электрических характеристик макета свинцового аккумулятора	Сборка и испытание макета аккумулятора. Снятие зарядноразрядных характеристик. Изучение влияния концентрации электролита на напряжение и емкость аккумулятора при разряде.	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
		4	Исследование электрических характеристик макета химического источника тока	Испытания марганцево-цинковых элементов и батарей. Влияние режима работы, концентрации электролита, условий разряда на электрические характеристики элементов и батарей	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20

^{*}лабораторные работы проводятся в специализированных учебных лабораториях кафедры с использованием специального оборудования.

Учитывая быстрое изменение приоритетов в мировой научной практике, объекты синтеза и исследования могут отличаться от приведенных в содержании при сохранении методической основы выполнения задачи.

8. Самостоятельная работа бакалавра 8.1 Темы и формы СРС

№ п/п	Раздел дисциплины	Темы, выносимые на самостоятельную работу	Часы	Форма СРС	Формир уемые компете нции
1	Введение в дисциплину. Основные понятия электрохимической технологии	История электрохимии. Основные задачи и направления развития электрохимической технологии в мире и России. Элементы и режимы работы электрохимических устройств. Экология и электрохимия. Электрохимические методы очистки воды, промывных и сточных вод.	10	Доклад, реферат, презентация, изучение теоретического материала	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
2	Теоретические основы электрохимической технологии	Потенциометрия. Мембранные электроды. Скорость электрохимических процессов, поляризация электродов, перенапряжение, энергетика необратимых электродных процессов в конкретных прикладных задачах. Растворимые и нерастворимые аноды.	6	Доклад, реферат, презентация, тест, изучение теоретического материала	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
3	Электрохимические технологии в производстве неорганических и органических веществ	Современные конструкции электролизеров электролиза воды. Получение тяжелой воды. Особенности производства хлора и едких щелочей в различных. Синтез кислородных соединений хлора, гипохлорита и хлората натрия, хлорной кислоты, пероксодвусерной (надсерной) кислоты, ее солей и перекиси водорода. Производство диоксида марганца, перманганата калия, гексациано-(III)феррата калия.	10	Доклад, реферат, презентация, тест, подготовка к контрольной и лабораторной работе, оформление отчета	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
4	Электрохимические технологии защиты от коррозии объектов техники	Назначение, выбор и классификация гальванических покрытий. Прогрессивные методы подготовки поверхности. Востребованные и перспективные защитные и защитно-декоративные покрытия. Износостойкие, антифрикционные, магнитные покрытия. Покрытия под пайку, электрических контактов, благородными металлами, легких металлов и сплавов.	10	Доклад, реферат, презентация, тест, решение задач, подготовка к лабораторной работе, оформление отчета	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
5	Электрохимическая металлургия	Основы электролиза с выделением металлов. Цементация металлов. Особенности гидроэлектрометаллургии меди, никеля, их сплавов, цинка. Электролитическое рафинирование золота, свинца, олова. Современные схемы, процессы, оборудование гидроэлектрометаллургии. Интенсификация процессов и перспективы развития технологий выделения металлов.	22	Доклад, реферат, презентация, тест, решение задач, подготовка к контрольной и лабораторной работе, оформление отчета	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
6	Электрохимические технологии нанесения покрытий, в производстве изделий, приборов, машин	Современные функциональные металлопокрытия в автомобилестроении, космонавтике, авиационной промышленности. Электроосаждение покрытий методом натирания. Тампонная гальванотехника. Сплавы в современной функциональной гальванотехнике. Прогрессивные технологии оксидирования, хроматирования, фосфатирования черных и цветных металлов. Лазерная и ультразвуковая обработка в современной функциональной гальванотехнике. Перспективы развития электрохимической размерной обработки металлов. Современная гальванопластика и ее применение в промышленности и искусстве.	22	Доклад, реферат, презентация, тест, решение задач, подготовка к лабораторной работе, оформление отчета	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20
7	Электрохимическая энергетика	Перспективы развития водородной и алюмоводородной энергетики. Современные электрохимические генераторы, накопители энергии, топливные элементы, резервные ХИТ. Производство основных ХИТ.	19	Доклад, реферат, подготовка к лабораторной работе, оформление отчета	ПК-1 ПК-4 ПК-10 ПК-11 ПК-20

8.2 Курсовой проект

Учебным планом по направлению 18.03.01 - «Химическая технология» по профилю «Технология электрохимических производств» в рамках дисциплины «Электрохимические технологии» предусмотрено выполнение студентами курсового проекта.

Цель выполнения курсового проекта по дисциплине «Электрохимические технологии» – ознакомление студентов с содержанием одного из наиболее распространенных видов работ, выполняемых инженерами-технологами на производстве.

Курсовой проект выполняется студентами индивидуально. Необходимый материал для выполнения курсового проекта собирается во время прохождения производственной практики. Тема курсового проекта выбирается с учетом конкретного производства на промышленном предприятии, на котором проводится производственная практика, и предложенного руководителем-преподавателем списка тем. Список тем курсовых проектов по дисциплине «Электрохимической технологии» ежегодно утверждается на заседании кафедры ТЭП.

Основные источники информации при выполнении курсового проекта — материалы, собранные в период производственной практики и представленные в отчете по практике, а также методические указания кафедры ТЭП и кафедр, консультирующих студентов при курсовом проектировании в соответствии с приказом по вузу.

Выполнение курсового проекта завершается оформлением студентом письменного отчета — «Курсовой проект по дисциплине «Электрохимические технологии» по установленной в вузе форме с последующей защитой результатов работы перед комиссией, назначаемой заведующим кафедрой ТЭП.

Примерная тематика курсовых проектов, выполняемых на кафедре ТЭП

- 1. Проект участка никелирования стальных изделий на подвесках.
- 2. Проект участка получения износостойкого хромового покрытия.
- 3. Проектирование участка цинкования изделий в барабане.
- 4. Проектирование участка никелирования.
- 5. Проектирование участка получения многослойного гальванического покрытия медь-никель-хром.
- 6. Технологическое проектирование процесса анодирования радиатора из силумина (на базе гальванического участка ОАО «Волжский электромеханический завод»).
- 7. Технологический процесс анодирования крепежных деталей из алюминиевого сплава Д16 (на базе гальванического участка ОАО «Вертолетный завод»).
- 8. Проектирование отдельных элементов линии анодирования деталей вертолета из алюминиевого сплава Д16 (на базе гальванического участка ОАО «Вертолетный завод»).
- 9. Проектирование отдельных элементов линии цинкования стальных деталей (на базе гальванического участка ОАО «Радиоприбор»)
- 10. Технологический процесс цинкования стальных деталей (на базе гальванического участка ОАО «Радиоприбор»).
- 11. Подбор стандартного оборудования и программного обеспечения при проектировании гальванического производства анодирования алюминия.

- 12. Подбор стандартного оборудования и программного обеспечения при проектировании гальванического производства анодирования титана.
- 13. Подбор стандартного оборудования и программного обеспечения при проектировании процесса нанесения фосфатных покрытий.
- 14. Подбор стандартного оборудования и программного обеспечения при проектировании гальванического производства нанесения никелевых покрытий.
- 15. Подбор стандартного оборудования и программного обеспечения при проектировании гальванического производства нанесения цинковых покрытий.
- 16. Подбор стандартного оборудования и программного обеспечения при проектировании гальванического производства нанесения кадмиевых покрытий.
- 17. Подбор стандартного оборудования и программного обеспечения при проектировании гальванического производства нанесения медных покрытий.
- 18. Подбор стандартного оборудования и программного обеспечения при проектировании гальванического производства нанесения хромовых покрытий.
- 19. Нестандартные подходы к конструированию гальванического оборудования.
- 20. Проект участка хромирования.

9. Использование рейтинговой системы оценки знаний.

При оценке результатов деятельности студентов в рамках дисциплины «Электрохимические технологии» используется рейтинговая система оценки знаний студентов на основании «Положения о балльно-рейтинговой системе оценки знаний студентов и обеспечения качества учебного процесса» (Утверждено решением УМК Ученого совета ФГБОУ ВПО «КНИТУ», протокол №12 от 24 октября 2011 г.). Рейтинговая оценка формируется на основании текущего и промежуточного контроля. Максимальное и минимальное количество баллов по различным видам учебной работы описано в Положении о рейтинговой системе.

Изучение дисциплины «Электрохимические технологии» заканчивается экзаменом. В этом случае рейтинг студента рассчитывается, исходя из максимальной оценки, равной 100 баллам. Предмет считается усвоенным, если выполнены все контрольные точки и сумма баллов за текущую работу составляет не менее 60.

Суммарный рейтинг по дисциплине $R_{\text{ДИС}}$ складывается из $R_{\text{ТЕК}}$ и $R_{\text{ЭКЗ}}$

$$R_{\text{ДИС}} = R_{\text{ТЕК}} + R_{\text{ЭКЗАМЕН}}$$

 R_{TEK} складывается из $R_{Л}$, R_{KP} , $R_{ЛАБ}$ и $R_{PE\Phi}$

$$R_{TEK} = R_{\Pi} + R_{\Pi 3} + R_{\Pi AB} + R_{PE\Phi}$$

 $R_{\rm J}$ – баллы, полученные за посещение лекций и ответы во время экспресс-опросов;

R_{KP} - баллы, полученные за выполнение контрольных работ;

R_{ЛАБ} – баллы, полученные за выполнение и сдачу лабораторных работ;

R_{РЕФ} – баллы, полученные за защиту реферата.

При изучении дисциплины «Электрохимические технологии» в каждом семестре (6-й и 7-й семестр) предусматривается выполнение девяти лабораторных работ, одной контрольной работы, выполнение и защита реферата (доклада, презентации), прохождения тестирования. За эти контрольные точки студент может получить максимальное количество баллов – 56, а именно: выполнение и сдача лабораторных работ – 30 баллов; выполнение контрольной работы – 10 баллов; сдача теста – 10 баллов; защита реферата – 6 баллов. За посещение и

активность на лекционных занятиях студент может дополнительно получить 4 балла. В результате максимальный текущий рейтинг составит 60 баллов.

На экзамен студент допускается, имея не менее 36 баллов (интервал баллов от 36 до 60) и проставленный дифференцированный зачет по курсовому проекту (работе). За экзамен студент может получить максимальное количество баллов – 40 (интервал баллов от 24 до 40). При этом вводится следующая шкала перевода 100-бальной шкалы в 4-х бальную:

- от 87 до 100 баллов «отлично»
- от 73 до 86 баллов «хорошо»
- от 60 до 72 баллов «удовлетворительно»
- 60 и менее баллов «неудовлетворительно».

В таблице 4 приведен примерный расчет максимального рейтинга по отдельным видам работ для каждого семестра.

Таблица 4 - Расчет максимального рейтинга по отдельным видам работ

Оценочные средства	Кол-во	Min, баллов	Мах, баллов
Посещение лекций и ответы во время экспресс-опросов	18	0	4
Выполнение контрольной работы	1	5	10
Выполнение и сдача лабораторных работ	9	10	30
Защита реферата	1	3	6
Сдача теста	3	6	10
Экзамен		24	40
Итого:		60	100

10. Учебно-методическое и информационное обеспечение дисциплины

10.1 Основная литература

При изучении дисциплины «Электрохимические технологии» в качестве основных источников информации рекомендуется использовать следующую литературу:

Источники информации	Кол-во экз. в УНИЦ/ЭБС
1. Ротинян А.Л., Тихонов К.И., Шошина	
И.А. Тимонов А.М. Теоретическая	30 экз. в УНИЦ
электрохимия. – М.: ООО «ТИД «Студент»,	книту
2013. – 496c.	
2. Дамаскин Б.Б., Петрий О.А., Цирлина Г.А.	ЭБС «Лань»: http://e.lanbook.com/book/58166
Электрохимия. – СПб.: Лань, 2015. – 672 с.	Доступ из любой точки интернета после
	регистрации с ІР- адресов КНИТУ
3. Булидорова Г.В., Галяметдинов Ю.Г.,	20 экз. в УНИЦ КНИТУ
Ярошевская Х.М., Барабанов В.П.	http://ft.kstu.ru/ft/Bulidorova-
Электрохимия и химическая кинетика. Учеб.	elektrokhimiya.pdf
пособие. – Казань: Изд-во Каз. нац. исслед.	Доступ с ІР- адресов КНИТУ
технол. ун-та, 2014. – 372 с.	
4. Булидорова Г.В., Галяметдинов Ю.Г.,	70 экз. в УНИЦ КНИТУ
Ярошевская Х.М., Барабанов В.П.	http:/ft.kstu.ru/ft/Bulidorova-elektrolity.pdf
Электролиты. Учеб. пособие. – Казань: Изд-	Доступ с ІР- адресов КНИТУ
во Каз. нац. исслед. технол. ун-та, 2014. – 116	
c.	
5. Киселев М.Г. и др. Электрофизические и	ЭБС «Znanium.com»
электрохимические способы обработки	http://znanium.com
материалов: учеб. пособие. – М.: НИЦ	/catalog.php?bookinfo=441209
ИНФРА-М, 2014. – 389 с.	Доступ из любой точки интернета после
	регистрации с ІР- адресов КНИТУ
6. Гамбург Ю.Д., Джованни Зангари. Теория	ЭБС «Консультант студента»
и практика электроосаждения металлов.	http://www.studentlibrary.ru/book/ISBN97859
Монография. – БИНОМ: Лаборатория	96329014.html
знаний, 2015. – 441 с.	Доступ из любой точки интернета после
	регистрации с ІР- адресов КНИТУ
7. Мирзоев Р.А., Давыдов А.Д. Анодные	ЭБС «Лань»
процессы электрохимической и химической	https://e.lanbook.com/book/76036
обработки металлов. Учеб. пособие. – С-Пб:	Доступ из любой точки интернета после
Изд-во С-Пб. гос. полит. ун-та, 2013. – 382 с.	регистрации с ІР- адресов КНИТУ

10.2 Дополнительная литература

В качестве дополнительных источников информации рекомендуется использовать следующую литературу:

Источники информации	Кол-во экз. в УНИЦ / ЭБС		
1. Афанасьев Б.Н., Акулова Ю.П. Физическая химия. – СПб.: Лань, 2012. – 416 с.	ЭБС «Лань»: http://e.lanbook.com/book/4312 Доступ из любой точки интернета после регистрации с IP- адресов КНИТУ		
2. Мухин В.А. Окислительно-восстановительные процессы: Учеб. пособие. — Омск: Изд-во Омского гос. ун-та им. Ф.М. Достоевского, 2009. — 184 с.	ЭБС «Книгафонд»: http://www.knigafund.ru/books/185360 Доступ из любой точки интернета после регистрации с IP- адресов КНИТУ		
3. Березин Н.Б., Межевич Ж.В. Электроосаждение металлов из водных растворов комплексных соединений. Монография. – Казань: Изд-во Каз. нац. исслед. технол. ун-та, 2015. – 168 с.	5 экз. в УНИЦ КНИТУ http://ft.kstu.ru/ft/Berezin- elektroosazhdenie_metallov.pdf Доступ с IP-адресов КНИТУ		
4. Лукомский Ю.Я., Гамбург Ю.Д. Физико-химические основы электрохимии. — Долгопрудный: Издательский Дом «Интеллект», 2008. — 424 с.	5 экз. в УНИЦ КНИТУ		

10.3 Электронные источники информации

- 1. Elibrary.ru [Электронный ресурс]: электронная библиотечная система: база данных содержит сведения об отечественных книгах и периодических изданиях по науке, технологии, медиицне и образовании /Рос. информ. портал. Режим доступа: http://elibrary.ru.
- 2. Издательство «Лань» [Электронный ресурс]: электронная библиотечная система: содержит электронные версии книг издательства «Лань» и других ведущих издательств учебной литературы и электронные версии периодических изданий по естественным, техническим и гуманитарным наукам. Режим доступа: http://e.lanbook.com.
- 3. Znanium.com. [Электронный ресурс]: электронная библиотечная система: содержит электронные версии книг издательства «Инфра-М» и других ведущих издательств учебной литературы и электронные версии периодических изданий по естественным, техническим и гуманитарным наукам. Режим доступа: http://www.znanium.com
- 4. Российская государственная библиотека [Электронный ресурс]: содержит электронные версии книг, учебников, монографий, сборников научных трудов отечественных и зарубежных авторов, периодических изданий. Режим доступа: http://www.rbe.ru.
 - 5. ЭБС «Книгафонд». Режим доступа: http://www.knigafund.ru.
 - 6. Электронный каталог КНИТУ: http://www.ruslan.kstu.ru.
 - 7. Журнал «Вестник Казанского технологического университета»: http://elibrary.ru/contents.asp?titleid=8488.

10.4 Российские журналы

- 1. Электрохимия.
- 2. Журнал физической химии.
- 3. Журнал прикладной химии.
- 4. Физикохимия поверхности и защита материалов.
- 5. Гальванотехника и обработка поверхности.

Согласовано:

Зав. сектором ОКУФ

жазанский ини оказыват лестедоваты не технологический упиверсных информационный центр

ФЕДЕРАЛЬНОЕ ГОСУДАР ОБРАЗОВАТЕЛЬНОЕ ТО

11. Оценочные средства для определения результатов освоения дисциплины

Оценочные средства для проведения текущего контроля успеваемости, промежуточной аттестации обучающихся и итоговой (государственной итоговой) аттестации разрабатываются согласно положению о Фондах оценочных средств, рассматриваются как составная часть рабочей программы и оформляются отдельным документом.

12. Материально-техническое обеспечение дисциплины «Электрохимические технологии»

- 1. Материально-техническое обеспечение лекционных занятий:
 - аудитория Е-525
 - проектор EPSON EB-X6;
 - настенный экран;
 - ноутбук AcerAspire 3000;
 - комплект электронных презентаций/слайдов.
- 2. Материально-техническое обеспечение лабораторного практикума:

Учебная лаборатория для исследования электрохимических свойств наноструктурированных материалов:

- лабораторный потенциостат-гальваностат P-30I («Элинс») + управляющий ПК и лабораторный рН-метр Анион 4100;
- термостат циркуляционный универсальный с ванной из нержавеющей стали BT25-1 Учебная лаборатория теоретической и прикладной электрохимии:
- потенциостат Пи-50-1-1(2 шт);
- потенциостат П-5848 (4 шт);
- источник питания постоянного тока Б5-47 (2 шт);
- источник питания постоянного тока Б5-46 2 (шт);
- мультиметр ВР-11А;
- миллиамперметры ML-20 (2шт);
- весы ВЛТЭ-150;
- цифровой мультиметр ДТ-830В (3шт);
- магнитная мешалка ММ5 (2шт);
- лабораторная гальваническая ванна;
- электрохимическая ячейка (4 шт);
- электролизер (4 шт);
- вольтметр универсальный цифровой В7-38М (2 шт);
- микроскоп металлургический инвертированный Меіјі ІМ7530;
- микроскоп МИМ-4;
- кондуктометр универсальный Эксперт-002;
- аналитические весы WLA-31;
- электроды (рабочие, вспомогательные, сравнения);
- реагенты (неорганические и органические вещества).

3. Прочее:

- 1) рабочее место преподавателя, оснащенное компьютером с доступом в Интернет;
- 2) рабочие места студентов, оснащенные компьютерами с доступом в Интернет, предназначенные для работы в электронной образовательной среде.

13. Образовательные технологии

В соответствии с требованиями ФГОС при реализации различных видов учебной работы в процессе изучения дисциплины «Электрохимические технологии» используются следующие образовательные технологии, активные и интерактивные (81 час) формы проведения занятий:

- Лекции лекция визуализация, лекция пресс конференция, проблемная лекция, лекция беседа;
- Лабораторные и практические занятия дискуссия по основным направлениям и перспективам развития электрохимических технологий, семинар круглый стол, семинар в диалоговом режиме и семинар развернутая беседа с обсуждением доклада;
- Дополнительные консультации и дополнительные формы обучения по отдельным темам:
 - Взаимный контроль студентов по тестам;
 - Отработка пройденного материала при решении конкретных практических задач группы студентов (3-4 человека) получают практические задания на одну тему и находят свой путь решения проблемы;
 - Обмен знаниями между студентами в малых группах («каруселька»).