Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Казанский национальный исследовательский технологический университет» (ФГБОУ ВО КНИТУ)

УТВЕРЖДАЮ

Проректор по УР А.В. Бурмистров

09 2018

РАБОЧАЯ ПРОГРАММА

По дисциплине Б1.В.ДВ.6.1 «Химия и физика конденсированных состояний»

по специальности подготовки 18.05.01 «Химическая технология энергонасыщенных материалов и изделий»

по специализации «Технология энергонасыщенных материалов и изделий»

Квалификация выпускника ИНЖЕНЕР

Форма обучения Очная

Институт, факультет ИХТИ, ФЭМИ

Кафедра-разработчик рабочей программы ТТХВ

Курс - 4, семестр – 7

	Часы	Зачетные единицы
Лекции	18	0,5
Практические занятия	-	
Семинарские занятия	-	
Лабораторные занятия	27	1,0
Самостоятельная работа	63	1,5
Форма аттестации		зачет
Всего	108	3,0

Рабочая программа составлена с учетом требований Федерального государственного образовательного стандарта высшего образования (нр.№ 1176 от 12.09.2016) по направлению подготовки 18.05.01 «Химическая технология энергонасыщенных материалов и изделий» по программе специализации № 3 «Технология энергонасыщенных материалов и изделий», на основании учебного плана набора обучающихся 2017 года.

Типовая программа по дисциплине Б1.В.ДВ.6.1 «Химия и физика конденсированных состояний» отсутствует

Разработчик программы:

Ассистент

Ball

Бадретдинова Л.Х.

Рабочая программа рассмотрена и одобрена на заседании кафедры <u>TTXB</u>, протокол от 3.09. 2018г. №1

Зав. кафедрой

Fral

Базотов В.Я.

УТВЕРЖДЕНО

Протокол заседания методической комиссии ИХТИ от 13.09.2018 г. № 9.09.2018 г. № 9.09.2018 г.

Председатель комиссии, профессор

Ponal

Базотов В.Я.

Начальник УМЦ

Китаева Л.А.

1. Цели освоения дисциплины

Целями освоения дисциплины «Химия и физика конденсированных состояний» являются

- *а)* формирование знаний об особенностях строения кристаллических твердых тел и жидкостей, взаимосвязи их структуры и свойств;
- б) обучение способам описания и представления структуры и симметрии кристаллов, выявлении взаимосвязи структуры и свойств кристаллических твердых тел жидкостей, исследованию физических и химических свойств кристаллических материалов экспериментальными и расчетно-теоретическими методами;
- *в)* раскрытие сущности процессов, происходящих в кристаллических твердых телах и жидкостях.

2. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Химия и физика конденсированных состояний» относится к вариативной части (по выбору) ООП и формирует у специалистов по направлению подготовки 18.05.01 «Химическая технология энергонасыщенных материалов и изделий» набор знаний, умений, навыков и компетенций, необходимых для выполнения научно-исследовательской, экспертной, производственной и проектно-технологической, организационно-управленческой видов профессиональной деятельности.

Для успешного освоения дисциплины «Химия и физика конденсированных состояний» *специалист по* направлению подготовки 18.05.01 «Химическая технология энергонасыщенных материалов и изделий», по профилю подготовки «Технология энергонасыщенных материалов и изделий», должен освоить материал предшествующих дисциплин:

- *а) Б1.Б.7 Физика*
- б) Б1.Б.8 Высшая математика

- в) Б1.Б.12 Физическая химия
- г) Б1.Б.14 Дисперсные системы и поверхностные явления
- д) Б1.В.ОД.5 Механика сплошной среды
- е) Б1.В.ОД.9.1 Теория, свойства и применение энергонасыщенных материалов

Дисциплина «Химия и физика конденсированных состояний» является предшествующей и необходима для успешного усвоения последующих лисциплин:

- а) Б1.Б.25.6 Теория и технология уплотнения энергонасыщенных материалов
- б) Б1.Б.25.9 Композиционные энергонасыщенные материалы и изделия на их основе
- в) Б1.Б.25.3 Методы исследования структуры и свойств энергонасыщенных материалов

Знания, полученные при изучении дисциплины «Химия и конденсированных состояний» могут быть использованы при прохождении практик (учебной, производственной, преддипломной, научно исследовательской практик), выполнении выпускных квалификационных работ, научно-18.05.01 исследовательской деятельности ПО направлению подготовки «Химическая технология энергонасыщенных материалов и изделий».

3. Компетенции обучающегося, формируемые в результате освоения дисциплины

- 1. ОПК-1 Способность использовать математические, естественнонаучные и инженерные знания для решения задач своей профессиональной деятельности.
- 2. ПК-10 Способность изучать научно-техническую информацию, отечественный и зарубежный опыт по тематике исследований.

В результате освоения дисциплины обучающийся должен:

1) Знать:

- а) термины и понятия, используемые в содержании лекционного материала и лабораторных занятий;
- б) особенности строения жидкостей, аморфных и кристаллических материалов, их структурные характеристики;
- в) основные закономерности проявления физических свойств твердых тел, способы их описания и представления;
- в) особенности структуры реальных кристаллов, влияние дефектов структуры реальных кристаллов на их физико-химические свойства.

2) Уметь:

- а) пользоваться различными способами представления структуры и симметрии кристаллов;
 - б) выявлять взаимосвязи структуры и свойств кристаллических твердых тел;
- в) исследовать физические и химические свойства твердых тел экспериментальными и расчетно-теоретическими методами;
- г) на основе анализа физико-химических свойств твердого тела прогнозировать его поведение в физико-химических процессах.
 - 3) Владеть:
- а) техникой проведения экспериментов и статистической обработки экспериментальных данных;
- б) расчетными и экспериментальными методами анализа физико-химических свойств конденсированных тел и прогнозирования их поведения в различных условиях эксплуатации.

4. Структура и содержание дисциплины «Химия и физика конденсированных состояний»

Общая трудоемкость дисциплины составляет <u>3</u> зачетных единиц, <u>108</u> часов.

№ п/ п	п/		Виды учебной работы (в часах)		Информационные другие образователы технологии, используо при осуществлени образовтельного проц	ные Эмые И	Оценочные средства для проведения промежуточной аттестации по разделам		
	Centeria	Семестр	Лек- ции	Семинар (Практи- ческие занятия, лаборато рные практику мы)	Лаборат орные работы	CPC			pusaenum
1	Р.1 Кристаллогра фия	7	10	ğ III.	4	21	Лекции лабораторные зан. в традицион форме; использова информационных технологий выполнении СРС	ной	Входной контроль, сдача лабораторных работ
2	Р.2 Кристаллофиз ика	7	4	I.	8	21	Лекции лабораторные зан. в традицион форме; использова информационных технологий выполнении СРС	ной	Сдача лабораторных работ
3	Р.3 Кристаллохи мия	7	4	9.	15	21	Лекции лабораторные зан. в традицион форме; использова информационных технологий выполнении СРС	ной	Сдача лабораторных работ, реферат
	Итого		18		27	63			
Фо	рма аттестации								Зачет

5. Содержание лекционных занятий по темам с указанием формируемых компетенций и используемых инновационных образовательных технологий.

№ п/п	Раздел дисципли ны	Час ы	Тема лекционного занятия	Краткое содержание	Формир уемые компете нции
1	Р.1 Кристалло графия	10	Т.1 Природа и строение твердых тел и жидкостей Т.2 Кристаллическо е состояние вещества. Структура идеальных кристаллов Т.3 Структура реальных кристаллов Т.4 Аморфные твердые тела и жидкости	Кристаллические и некристаллические твердые тела, основные свойства конденсированного вещества, виды химической связи в кристаллах, агрегатные состояния, фазовые переходы, процесс зарождения конденсированного вещества Структура кристалла и пространственная решетка; элементарная ячейка кристалла; кристаллографические индексы узлов, направлений и плоскостей; кристаллографические проекции; элементы симметрии конечных фигур; точечные группы симметрии; кристаллографические категории и сингонии; симметрия структуры кристаллов; решетки Бравэ; пространственные группы симметрии. Дефекты в твердом теле, их виды, природа и происхождение; точечные, линейные и плоские дефекты в твердых телах; влияние дефектов на физико-химические свойства кристаллов. Макроскопическое описание жидкостей; микроструктура и свойства жидкостей; двухфазное состояние жидкость; неупорядоченность твердых тел; электроны в	ОПК-1, ПК-10
2	Р.2 Кристалло физика	4	Т.5 Физические свойства кристаллов	аморфных телах Кристаллофизические системы координат; матричное представление преобразований симметрии; указательные поверхности; предельные группы симметрии; принципы Неймана и Кюри в кристаллофизике; скалярные и векторные свойства кристаллов; пироэлектрический эффект и особенности его проявления в кристаллах энергонасыщенных материалов; описание физических свойств кристаллов с помощью тензоров; электрические свойства кристаллов; тензор диэлектрических проницаемостей; тензоры напряжений и деформаций; пьезоэлектрический эффект; упругие свойства кристаллов.	ОПК-1, ПК-10
3	Р.2 Кристалло химия	4	Т.6 Основные понятия кристаллохимии	Атомные и ионные радиусы; координационное число и координационный многогранник; плотнейшие упаковки частиц в структурах;	ОПК-1, ПК-10

		полиморфизм;	особени	ности	строения	
		органических	кристаллов	энергон	асыщенных	
		материалов.				

6. Содержание семинарских, практических занятий (лабораторного практикума)

Не предусмотрено учебным планом

7. Содержание лабораторных занятий (если предусмотрено учебным планом)

Цель проведения лабораторных занятий — освоение лекционного материала, касающегося основных тем дисциплины, а также приобретение обучающимися навыков, связанных с применением полученных знаний.

№ п/п	Раздел	Часы	Наименование лабораторной работы	Формируемые
1	Р.1 Кристаллография	4	Л.р.1 Изучение дислокационной структуры монокристаллических образцов методом избирательного травления	компетенции ОПК-1, ПК-10
2	Р.2 Кристаллофизика	15	Л.р.2 Изучение диэлектрических свойств конденсированных систем методами диэлектрической спектроскопии Л.р.3 Исследование процесса релаксации электрических зарядов Л.р.4 Изучение электризации порошкообразных энергонасыщенных материалов в условиях пересыпания	ОПК-1, ПК-10
3	Р.2 Кристаллохимия	8	Л.р.5 Определение поверхностного натяжения методом отрыва кольца Л.р.6 Количественный анализ кристаллических материалов методом рентгено-фазового анализа	ОПК-1, ПК-10

^{*}Лабораторные занятия проводятся в учебных лабораториях кафедры ТТХВ (И-312, И-210, комнаты №6,7,8 УОП), в лабораториях коллективного пользования ИХТИ (И1-212, И-324, И-321) с использованием стандартного лабораторного и специального оборудования: рентгеновский дифрактометр Rigaku, диэлектрический спектрометр NOVOCONTROL Consept-80 и программным обеспечением Win-Deta, микротвердомер Shimadzy HMV-2 Series, компьютеры, оптические и электронные микроскопы, установка для измерения межфазного натяжения (весы Дю-Нуи), установкой для определения электрических потенциалов ИПЭП-1, вибросмеситель.

8. Самостоятельная работа

№ п/п	Темы, выносимые на самостоятельную работу	Час ы	Форма СРС	Формир уемые компете нции
1	1 Основы зонной теории.		Проработка лекционного материала и рекомендованной литературы. Выбор темы реферата, литературный анализ темы.	ОПК-1, ПК-10
2	Кристаллическая решетка конденсированного вещества.	10	Проработка лекционного материала и рекомендованной литературы. Выбор темы реферата, литературный анализ темы.	ОПК-1, ПК-10
3	Металлы, полупроводники, диэлектрики.	15	Проработка лекционного материала и рекомендованной литературы. Выбор темы реферата, литературный анализ темы.	ОПК-1, ПК-10
4	Квантовая физика конденсированного вещества	10	Проработка лекционного материала и рекомендованной литературы. Выбор темы реферата, литературный анализ темы.	ОПК-1, ПК-10
5	Несовершенства и дефекты кристаллической решетки	12	Проработка лекционного материала и рекомендованной литературы. Выбор темы реферата, литературный анализ темы.	ОПК-1, ПК-10

9. Использование рейтинговой системы оценки знаний.

При оценке результатов деятельности студентов в рамках дисциплины «Физика и химия конденсированного состояния» используется рейтинговая система.

Применение рейтинговой системы осуществляется согласно «Положения о балльно-рейтинговой системы оценки знаний обучающихся и обеспечения качества учебного процесса» (Утверждено решением УМК Ученого совета ФГБОУ ВО «КНИТУ», протокол №7 от 4 сентября 2017 г.), специально разработанной для данной дисциплины, с учетом значимости и трудоемкости выполняемой учебной работы.

При изучении дисциплины «Химия и физика конденсированных состояний» предусматривается входной контроль, реферат, выполнение 6

лабораторных работ. За эти контрольные точки студент может получить минимальное и максимальное количество баллов (см. таблицу).

Текущий рейтинг складывается из оценки следующих видов контроля:

Оценочные средства	Кол-во	Міп, баллов	Мах, баллов
Посещение лекций	9	6	9
Контрольная работа	1	12	20
Лабораторная работа	6	18	30
Реферат	1	18	30
Поощрительные баллы		6	11
Итого:		60	100

Пересчет рейтинга в 4-х бальную систему оценки знаний производится в соответствии с установленной шкалой.

Пересчет рейтинга в шкалу оценок:

Оценка	Итоговая сумма баллов	Оценка (ECTS)
5 (отлично)	87-100	А (отлично)
4 (xopowo)	83-86	В (очень хорошо)
	78-82	С (хорошо)
	74-77	D (удовлетворительно)
3 (удовлетворительно)	68-73	
	61-67	Е (посредственно)
2 (неудовлетворительно), не зачтено	Ниже 61 баллов	F (неудовлетворительно)

10. Информационно-методическое обеспечение дисциплины 10.1 Основная литература

При изучении дисциплины «Химия и физика конденсированных состояний» в качестве основных источников информации рекомендуется использовать следующую литературу.

Основные источники информации	Кол-во экз.
1. Фахльман, Б.Д. Химия новых материалов и	72 экз. в УНИЦ КНИТУ
нанотехнологии: уч. пособие – Долгопрудный	·
интеллект, 2011 – 464 c.	
2. Цирельсон, В.Г. Квантовая химия. Молекулы,	100 экз. в УНИЦ КНИТУ
молекулярные системы и твердые тела: учеб.	
пособие. – М.: БИНОМ, 2010. – 496 с.	
3. Физика конденсированного состояния: уч.	ЭБС «Университетская библиотека Онлайн:
Пособие. Гольдаде В.А., Пинчук Л.С.: Беларусская	<u>«Книгофонд»</u>
наука, 2009. – 648 с.	http://www.knigafund.ru/books/182634
	Доступ из любой точки интернета после
	регистрации с ІР-адресов КНИТУ
4. Делоне Н.Б. Квантовая природа вещества.	ЭБС <u>«Консультант студента»</u>
Монография М., Физматлит, 2008, 208с.	http://www.studentlibrary.ru/book/ISBN9785922
	108676.html
	Доступ из любой точки интернета после
	регистрации с ІР-адресов КНИТУ
5. Байков Ю.А., Кузнецов В.М. Физика	ЭБС <u>«Консультант студента»</u>
конденсированного состояния. Учебное пособие.	http://www.studentlibrary.ru/book/5ISBN978599
М., БИНОМ. Лаборатория знаний, 2011, 296 c.	6329601.html
	Доступ из любой точки интернета после
	регистрации с ІР-адресов КНИТУ

10.2 Дополнительная литература

В качестве дополнительных источников информации рекомендуется использовать следующую литературу:

Дополнительные источники информации	Кол-во экз.
1. Бабкин, Е.В. Основы физики конденсированного состояния вещества: учебное пособие, 2007. – 228с.	l '
2. Товрин, Ю.К. Молекулярная теория адсобрции в пористых телах: монография. – М.; Физматлит, 2012. – 623 с.	2 экз. в УНИЦ КНИТУ
3. Епифанов, Г.И. Физика твердого тела: учеб. пособие, - 4-е изд., - Краснодар: Лань, 2011. – 288 с.	1 экз. в УНИЦ КНИТУ

4. Бернштейн, Д. – Полиморфизм молекулярных	2 экз. в УНИЦ КНИТУ
кристаллов, под ред. М.Ю. Антипина, Т.В.	
Тимофеевой. – М.: Наука, 2007 – 512 c.	
5. Журнал структурной химии: научный журнал:	ЭБС «Университетская библиотека
CO PAH, 2013, 197c.	онлайн»
	http://biblioclub.ru/index.php.page=book&id=22
	2694
	Доступ из любой точки интернета после
	регистрации с ІР-адресов КНИТУ

10.3 Электронные источники информации

При изучении дисциплины «Физика и химия конденсированного состояния» использование электронных источников информации:

- 1. Научная Электронная Библиотека (НЭБ) Режим доступа: http://elibrary.ru
- 2. ЭБС «КнигаФонд» Режим доступа: www.knigafund.ru
- 3. Электронный каталог УНИЦ Режим доступа: http://ruslan.kstu.ru

Согласовано:

Зав.сектором ОКУФ

11. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

Оценочные средства для проведения текущего контроля успеваемости, промежуточной аттестации обучающихся и итоговой (государственной итоговой) аттестации разрабатываются согласно положению о Фондах оценочных средств, рассматриваются как составная часть рабочей программы и оформляются отдельным документом.

12. Материально-техническое обеспечение дисциплины (модуля).

В качестве материально-технического обеспечения дисциплины могут быть использованы комплекты электронных презентаций рефератов; плакаты и рисунки кристаллических структур с ОЦК, ГЦК и ГПУ решетками; изображения дефектов в кристаллических решетках; демонстрационные приборы; средства мониторинга (образцы выполненных реферативных работ и отчетов по лабораторным работам).

1. Лекционные занятия:

- комплект лекций;
- аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук).

2. Лабораторные работы:

- лаборатория «Изучение дислокационной структуры монокристаллических образцов методом избирательного травления», оснащена набором оптических микроскопов, образцами органических кристаллов и соответствующими растворами-травителями, микротвердомером Shimadzu HMV-2 Series;
- лаборатория «Изучение диэлектрических свойств конденсированных систем методами диэлектрической спектроскопии» оснащена

диэлектрическим спектрометром фирмы Novocontrol Consept-80 и программным обеспечением Win-Deta;

- лаборатория «Количественный анализ кристаллических материалов методом рентгено-фазового анализа», оснащена установкой для рентгеновских исследований Rigaku с соответствующим набором приставок и программным обеспечением;
- *лаборатория* «Изучение электризации порошкообразных энергонасыщенных материалов в условиях пересыпания» оснащена установкой для определения электрических потенциалов ИПЭП-1 и вибросмесителем;
- *лаборатория* «Исследование процесса релаксации электрических зарядов» оснащена установкой для определения электрических потенциалов ИПЭП-1 и вибросмесителем;
- лаборатория «Определение поверхностного натяжения методом отрыва кольца» оснащена прибором для определения межфазного натяжения (весы дю-Нуи).

13. Образовательные технологии

При обучении дисциплине «Химия и физика конденсированных состояний», используются следующие образовательные технологии:

- лекции в традиционной форме с элементами проблемного изложения учебного материала;
- лабораторные работы с обсуждением результатов работы в студенческих учебных подгруппах (групповые дискуссии);
 - информационные технологии (при выполнении СРС).

Время занятий, проводимых в интерактивных формах, составляет 11 часов и включает: обсуждение итогов выполнения лабораторных заданий в форме дискуссий, а также работа в малых группах.