Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Казанский национальный исследовательский технологический университет» (ФГБОУ ВО «КНИТУ»)

УТВЕРЖДАЮ

РАБОЧАЯ ПРОГРАММА

По дисциплине Б1.В.ДВ.9 «Основы нанотехнологий в полимерном материаловедении»

Направление подготовки 18.03.01 «Химическая технология»

Профиль подготовки «Технология и переработка полимеров» Квалификация выпускника - бакалавр Форма обучения - очная Институт, факультет - Институт полимеров, ТПСПК Кафедра-разработчик рабочей программы - ТППКМ Курс, семестр - 4, 7

	Часы	Зачетные единицы
Лекции	36	1
Практические занятия	9	0.25
Семинарские занятия	-	-
Лабораторные занятия	-	-
Самостоятельная работа	63	1.75
Форма аттестации - экзамен	36	1
Bcero	144	4

Рабочая программа составлена с учетом требований Федерального государственного образовательного стандарта высшего образования (№ 1005 от 11.08.2016) по направлению 18.03.01 «Химическая технология» по профилю «Технология и переработка полимеров» на основании учебного плана для набора обучающихся 2015, 2016, 2017, 2018 гг.

Разработчик программь	и: профессор	(нодиясь)	Г.А. Кутырев
Рабочая программа расс 03.09.2018 г. № 1	мотрена и одобрена	на заседании к	афедры ТППКМ от
	Desel		Т.Р. Дебердеев
Зав. кафедрой	(полижь)		т.т. деоердеев

УТВЕРЖДЕНО

Протокол заседания методической комиссии факультета, к которому относится кафедра-разработчик РП от 05.09.2018 г. № 2

Председатель комиссии, профессор

О.В. Стоянов

Нач. УМЦ

(noznyky)

Л.А. Китаева

1. Цели освоения дисциплины «Основы нанотехнологий в полимерном материаловедении»

Целями освоения дисциплины «Основы нанотехнологий в полимерном материаловедении» являются:

- а) ознакомление обучающихся с особенностями строения наноматериалов, специфическими свойствами нанообъектов и наноструктурированных систем;
- б) получение и закрепление обучающимися теоретических знаний в области экспериментального исследования наноструктур и наноматериалов;
- в) изучение особенностей исследования нанообъектов и наносистем, физико-химических основ получения наночастиц, процессов формирования наноструктур и наноматериалов, методов получения нанокомпозиционных материалов.

2. Место дисциплины «Основы нанотехнологий в полимерном материаловедении» в структуре образовательной программы

Дисциплина «Основы нанотехнологий в полимерном материаловедении» относится к базовой (по выбору) части ОП и формирует у бакалавров по направлению подготовки 18.03.01 «Химическая технология» набор знаний, умений, навыков и компетенций.

Для успешного освоения дисциплины «Основы нанотехнологий в полимерном материаловедении» бакалавр по направлению подготовки 18.03.01 «Химическая технология» должен освоить материал предшествующих дисциплин:

- а) Математика;
- б) Физика;
- в) Общая, неорганическая и органическая химия;
- г) Физическая и коллоидная химия;
- д) Аналитическая химия и физико-химические методы анализа;

- е) Введение в химию высокомолекулярных соединений;
- ж) Химия и физика полимеров;
- з) Технология полимеров;
- и) Переработка полимеров.

Знания, полученные при изучении дисциплины «Основы нанотехнологий в полимерном материаловедении», могут быть использованы при прохождении учебной, производственной и преддипломной практик, при выполнении выпускных квалификационных работ и в научно-исследовательской деятельности по направлению подготовки 18.03.01 «Химическая технология».

3. Компетенции обучающегося, формируемые в результате освоения дисциплины «Основы нанотехнологий в полимерном материаловедении»

- 1. ОПК-3 готовность использовать знания о строении вещества, природе химической связи в различных классах химических соединений для понимания свойств материалов и механизма химических процессов, протекающих в окружающем мире.
- 2. ПК-18 готовность использовать знание свойств химических элементов, соединений и материалов на их основе для решения задач профессиональной деятельности.
- 3. ПК-20 готовность изучать научно-техническую информацию, отечественный и зарубежный опыт по тематике исследования.

В результате освоения дисциплины «Основы нанотехнологий в полимерном материаловедении» обучающийся должен:

1. Знать

понятия: нанообъект, нанотехнология, кластер, 0D-, 1D-, 2D-структуры, гиперразветвленный наноматериал, полимер, дендример, наноструктурированный полимер, суфрактант, нанокомпозит; нанообъектов наиболее классификацию И важные нанообъекты; классификацию нанокомпозитов; области полимерных применения наноструктурированных материалов; основные методы получения изолированных наночастиц, нанокристаллических И наноразмерных частиц; аппаратурное оформление процессов получения наночастиц и наноматериалов;

2. Уметь

проводить необходимые эксперименты по изучению структуры и свойств полимерных нанокомпозитов; получать результаты, их обрабатывать и анализировать в рамках метода; использовать полученные результаты в практических целях для разработки новых материалов, оценки и прогнозирования их технологических и эксплуатационных свойств;

3. Владеть

основными методами получения наноструктурированных полимеров и полимерных нанокомпозитов; методами и приборами для изучения и анализа полимерных нанокомпозитов; навыками самостоятельной научно-исследовательской работы в области нанотехнологий и полимерных нанокомпозитов.

4. Структура и содержание дисциплины «Основы нанотехнологий в полимерном материаловедении»

Общая трудоемкость дисциплины «Основы нанотехнологий в полимерном материаловедении» составляет 4 зачетных единицы, 144 часа.

]	Виды у рабо (в ча	ОТЫ	Í	Информационные	
№ п/п	Раздел дисциплины	Семестр	Лекции	Семинарские (практические) занятия	Лабораторные работы	CPC	и другие образовательные технологии, используемые при осуществлении образовательного процесса	Оценочные средства для проведения промежуточной аттестации по разделам
1	2	3	4	5	6	7	8	9
1	Введение	7	4	1	ı	8	Из раздела «Основная литература»	Коллоквиум
2	Методы получения наноразмерных частиц (НРЧ)	7	8	2	-	16	Из разделов «Основная литература» и «Дополнительная литература»	Коллоквиум
3	Химические методы получение НРЧ	7	4	1	-	10	Из разделов «Основная литература» и «Дополнительная литература»	Коллоквиум
4	Макромолекулярные стабилизаторы ультрадисперсных частиц	7	6	1	-	8	Из разделов «Основная литература» и «Дополнительная литература»	Коллоквиум
5	Основные методы получения и свойства металлполимерных нанокопозитов	7	6	2	-	10	Из разделов «Основная литература» и «Дополнительная литература»	Коллоквиум
6	Гибридные полимер- неорганические композиты	7	4	1	-	6	Из разделов «Основная литература» и «Дополнительная литература»	Коллоквиум

1	2	3	4	5	6	7	8	9
	Молекулярные	7	4	1	-	5	Из разделов	Коллоквиум
	нанокомпозиты.						«Основная	
7	Наноструктурированные			литература» и				
	полимеры «Дополнительная							
	литература»							
	Форма аттестации							

5. Содержание лекционных занятий по дисциплине «Основы нанотехнологий в полимерном материаловедении»

№ п/п	Раздел дисциплины	Часы	Тема лекционного занятия Краткое содержание	Формируемые компетенции
1	2	3	краткое содержание Л	<u>компетенции</u> 5
1	Введение	4	Основные понятия и определения Предмет, цели и основные направления в нанотехнологии. Определение понятия наноматериалы. Термин «нано». Критерии определения наноматериалов: критический размер и функциональные свойства. Размерный эффект. Корреляционный радиус. Классификация наноматериалов. Наночастицы. ОD-, 1D-, 2D-структуры. Квантовые точки, квантовые проволоки и квантовые колодцы. Нанокристаллы и нанокластеры. Основные типы наноматериалов Основные типы наноматериалов. Углеродные нанотрубки, строение, методы получения и разделения. Механизмы роста нанотрубок. Одностенные и многостенные нанотрубки. Свойства углеродных нанотрубок. Фуллерены и фуллериты.	ОПК-3, ПК-18, ПК-20
2	Методы получения наноразмерных частиц (НРЧ)	8	Методы получения НРЧ Особенности получения наноструктур. Классификация методов получения наноструктур и наноматериалов Методы получения наносбектов. Наносборка. Групповые методы получения наноструктур: методы молекулярных пучков, ионная бомбардировка, аэрозольный метод (газофазный синтез), вакуумное испарение, катодное распыление, низкотемпературная плазма, механосинтез (механическое диспергирование, сонохимический синтез), детонационный синтез и электровзрыв, электроэрозионный метод.	ОПК-3, ПК-18, ПК-20

1	2	3	4	5
3	Химические методы получение НРЧ	4	Химические методы получение НРЧ Осаждение из коллоидных растворов. Синтез НРЧ в реакциях восстановления. Получение НРЧ в реакциях, стимулированных высокоэнергетическим излучением. Электрохимические методы получения НРЧ.	ОПК-3, ПК-18, ПК-20
4	Макромолекулярные стабилизаторы ультрадисперсных частиц	6	Макромолекулярные стабилизаторы ультрадисперсных частиц Устойчивость растворов наноразмерных частиц. Параметры оценки стабилизирующей способности полимеров. Адсорбция полимеров на металлических поверхностях. Полимерные суфрактанты. Условия и механизм стабилизации НРЧ полимерами. Стабилизация полиэлектролитами. Поверхностная защита. Матричная изоляция.	ОПК-3, ПК-18, ПК-20
5	Основные методы получения и свойства металлополимерных нанокомпозитов	6	Основные методы получения металлополимерных нанокомпозитов Общая характеристика методов. Механохимическое диспергирование. Микрокапсулирование. Напыление атомного металла на полимеры (криохимический метод, термические методы, напыление в плазме). Радиолиз и фотолиз в растворах. Формирование НРЧ в гетерогенных системах. Электрохимические пути формирования НРЧ в полимерах. Восстановительные методы синтеза. Восстановительные методы синтеза. Восстановители и восстановительные системы. Восстановление в растворах полимеров. Восстановление в блоксополимерах. Получение нанокомпозитов на стадии полимеризации (поликонденсации). Термолиз прекурсоров в Влияние металлсодержащих прекурсоров на деструкцию полимерной матрицы. Термолиз прекурсоров в растворах полимеров. Твердофазный термолиз.	ОПК-3, ПК-18, ПК-20
6	Гибридные полимер- неорганические композиты	4	Гибридные полимер-неорганические композиты Золь-гель методы получения наноструктурных нанокомпозитов. Интеркаляция полимеров в слоистые и пористые структуры. Нанокомпозиты включения. Пленки Ленгмюра-Блоджет.	ОПК-3, ПК-18, ПК-20

1	2	3	4	5
	Молекулярные	4	Молекулярные нанокомпозиты	ОПК-3,
	нанокомпозиты.		Молекулярные нанокомпозиты. Блок-	ПК-18, ПК-20
	Наноструктурированные		сополимеры.	
	полимеры		Гиперразветвленные полимеры	
			Гиперразветвленные полимеры (ГРП).	
7			История возникновения, развития и	
'			современное состояние области	
			гиперразветвленных полимеров.	
			Промышленное производство ГРП. Реакции	
			синтеза гиперразветвленных полимеров.	
			Синтез ГРП методами ступенчатой	
			трехмерной полимеризации.	

6. Содержание семинарских занятий по дисциплине «Основы нанотехнологий в полимерном материаловедении»

№ п/п	Раздел дисциплины	Часы	Тема семинарского занятия	Формируемые компетенции
1	2	3	4	5
1	Введение	1	Основные понятия и определения Основные типы наноматериалов	ОПК-3, ПК-18, ПК-20
2	Методы получения наноразмерных частиц (HPЧ)	2	Методы получения НРЧ	ОПК-3, ПК-18, ПК-20
3	Химические методы получение НРЧ	1	Химические методы получение НРЧ	ОПК-3, ПК-18, ПК-20
4	Макромолекулярные стабилизаторы ультрадисперсных частиц	1	Макромолекулярные стабилизаторы ультрадисперсных частиц	ОПК-3, ПК-18, ПК-20
5	Основные методы получения и свойства металлополимерных нанокомпозитов	2	Основные методы получения металлополимерных нанокомпозитов	ОПК-3, ПК-18, ПК-20
6	Гибридные полимер- неорганические композиты	1	Гибридные полимер-неорганические композиты	ОПК-3, ПК-18, ПК-20
7	Молекулярные нанокомпозиты. Наноструктурированные полимеры	1	Молекулярные нанокомпозиты Гиперразветвленные полимеры	ОПК-3, ПК-18, ПК-20

7. Содержаниелабораторных занятий по дисциплине «Основы нанотехнологий в полимерном материаловедении»

Учебным планом подготовки бакалавров по направлению 18.03.01 «Химическая технология» проведение лабораторных занятий по дисциплине «Основы нанотехнологий в полимерном материаловедении» не предусмотрено.

8. Самостоятельная работа бакалавра по дисциплине «Основы нанотехнологий в полимерном материаловедении»

№ п/п	Темы, выносимые на самостоятельную работу	Часы	Форма СРС	Формируемые компетенции
1	2	3	4	5
1	Введение	8	Изучение лекционного материала и рекомендуемой литературы; подготовка к коллоквиуму и семинарам	ОПК-3, ПК-18, ПК-20
2	Методы получения наноразмерных частиц (НРЧ)	16	Изучение лекционного материала и рекомендуемой литературы; подготовка к коллоквиуму и семинарам	ОПК-3, ПК-18, ПК-20
3	Химические методы получение НРЧ	10	Изучение лекционного материала и рекомендуемой литературы; подготовка к коллоквиуму и семинарам	ОПК-3, ПК-18, ПК-20
4	Макромолекулярные стабилизаторы ультрадисперсных частиц	8	Изучение лекционного материала и рекомендуемой литературы; подготовка к коллоквиуму и семинарам	ОПК-3, ПК-18, ПК-20
5	Основные методы получения и свойства металлополимерных нанокомпозитов	10	Изучение лекционного материала и рекомендуемой литературы; подготовка к коллоквиуму и семинарам	ОПК-3, ПК-18, ПК-20
6	Гибридные полимер- неорганические композиты	6	Изучение лекционного материала и рекомендуемой литературы; подготовка к коллоквиуму и семинарам	ОПК-3, ПК-18, ПК-20
7	Молекулярные нанокомпозиты. Наноструктурированные полимеры	5	Изучение лекционного материала и рекомендуемой литературы; подготовка к коллоквиуму и семинарам	ОПК-3, ПК-18, ПК-20

9. Использование рейтинговой системы знаний

При оценке результатов деятельности студентов в рамках дисциплины «Основы нанотехнологий в полимерном материаловедении» используется рейтинговая система. Рейтинговая оценка формируется на основании текущего и промежуточного контроля. Максимальное и минимальное количество баллов по различным видам учебной работы описано в положении о рейтинговой системе.

При изучении указанной дисциплины предусматривается 7 коллоквиумов и 18 семинаров. За эти контрольные точки обучающийся может получить минимальное и максимальное количество баллов (см. табл.).

Оценочные средства	Кол-во	Min баллов	Мах баллов
Коллоквиум	7	14	28
Семинар	18	28	32
Экзамен		24	40
Итого:		60	100

10. Информационно-методическое обеспечение дисциплины 10.1 Основная литература

Основные источники информации	Кол-во экз.
1.Барыбин, А.А. Физико-химия наночастиц,	ЭБС Znanium.com
наноматериалов и наноструктур: учебное пособие/	http://znanium.com/go.php?id=4
А.А.Барыбин, В.А.Бахтина, В.И.Томилин, Н.П.Томилина.	41543 доступ из любой точки
Красноярск: СФУ, 2011236 с.	интернета после регистрации
	с ІР-адресов КНИТУ
3. Витязь, П.А. Основы нанотехнологий и	ЭБС Znanium.com
наноматериалов: учебное пособие/П.А.Витязь,	http://znanium.com/go.php?id=5
Н.А.Свидунович. – М.: Высшая школа, 2010304 с.	06605 доступ из любой точки
	интернета после регистрации
	с ІР-адресов КНИТУ
5. Кобаяси Н.Введение в нанотехнологию. /Н Кобаяси.	31 экз. в УНИЦ
– М.: БИНОМ. Лаборатория знаний, 2008. – 134c.	

10.2 Дополнительная литература

В качестве дополнительных источников информации рекомендуется использовать следующую литературу:

Дополнительные источники информации	Кол-во экз.
1. Верещагина, Я.А. Инновационные технологии:	70 экз. в УНИЦ
введение в нанотехнологии: учебное	
пособие/Я.А.Верещагина. –Казань: КГТУ, 2009. – 115	
c.	
2. Козлов, Г.В. Дисперсно-наполненные полимерные	5 экз. в УНИЦ
нанокомпозиты: монография /Г.В.Козлов, Г.Е.Заиков,	В ЭБ УНИЦ
О.В.Стоянов, А.М.Кочнев. – Казань: Издательство	http://ft.kstu.ru/ft/kozlov-
КГТУ, 2012. – 125 с.	dispersno.pdf
	доступ с ір-адресов КНИТУ
3. Сергеев, А.Г. Нанометрология: монография	ЭБС Znanium.com
/А.Г.Сергеев. М.: Логос, 2011. – 416 с.	http://znanium.com/go.php?id=4
	69008 доступ из любой точки

	интернета после регистрации с
	ІР-адресов КНИТУ
2. Колмаков, А.Г. Основы технологий и применение	ЭБС Znanium.com
наноматериалов: монография/А.Г.Колмаков,	http://znanium.com/go.php?id=852
С.М.Баринов, М.И.Алымов. – М.: Физматлит, 2012.	369 доступ из любой точки
- 208 c.	интернета после регистрации с
	ІР-адресов КНИТУ
4. Пул Ч.П. Нанотехнологии. Перевод с англ. Изд.2.	10 экз. в УНИЦ
Учеб. пособие для вузов/ Ч. П. Пул, Ф. Оуэнс М.:	
Техносфера, 2010 328 с.	

10.3 Электронные источники информации

При изучении дисциплины «Основы нанотехнологий» использованы электронные источники информации:

- программное обеспечение и Интернет-ресурсы
- 2. http://portalnano.ru Федеральный портал «Нанотехнологии и наноматериалы»
- 3. http://nanorf.ru Российский электронный наножурнал
- 4. http://www.nanonewsnet.ru/ Портал «Нанотехнологии»
- 5. http://nanocenter.ru/ Наноцентр МЭИ
- 6. http://www.nanomaterials.ru/index.html ООО «Наноматериалы»

7. ЭБС «КнигаФонд» - Режим доступа: http://knigafund.ru

Согласовано:

Зав.сектором ОКУФ

федеральное государственное поджетное образовательное учреждение высшего профессионального образования образования образовательский учетно-научный информационный центр

11. Оценочные средства для определения результатов освоения дисциплины «Основы нанотехнологий в полимерном материаловедении»

Оценочные средства для проведения текущего контроля успеваемости, промежуточной аттестации обучающихся и итоговой (государственной итоговой) аттестации разрабатываются согласно положению о Фондах оценочных средств, рассматриваются как составная часть рабочей программы и оформляются отдельным документом.

12. Материально-техническое обеспечение дисциплины «Основы нанотехнологий в полимерном материаловедении»

Лекционные занятия:

- а) комплект презентаций по темам лекционных занятий, каждая из которых содержит набор электронных слайдов с иллюстративным материалом;
- б) аудитория, оснащенная доской и презентационной техникой (компьютер, проектор, экран).

Семинарские занятия:

а) аудитория, оснащенная доской и презентационной техникой (компьютер, проектор, экран).

13. Образовательные технологии

При проведении лекционных занятий используется комбинация образовательных технологий «классическое лекционное обучение», «обучение с помощью аудиовизуальных средств», «групповая дискуссия».

При выполнении семинарских занятий используется комбинация образовательных технологий «круглый стол» и «групповая дискуссия».

При выполнении самостоятельной работы используется комбинация образовательных технологий «обучение с помощью книги» и «обучение с помощью электронных источников информации».