Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Казанский национальный исследовательский технологический университет»

(ФГБОУ ВО «КНИТУ»)

УТВЕРЖДАЮ Проректор по УР

Бурмистров А.В.

2017 г.

РАБОЧАЯ ПРОГРАММА

По дисциплине Б1.В.ДВ.8.1 «Термодинамические расчеты химикотехнологических процессов»

Направление подготовки (специальности)

18.03.02

(шифр)

«Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии»

(наименование)

Профиль (специализация) подготовки «Основные процессы химических производств и химическая кибернетика»

Квалификация выпускника

Бакалавр

Форма обучения

Очная

Институт, факультет (осуществляющий подготовку ООП)

ИНХН, ФННХ

Кафедра-разработчик рабочей программы <u>ОХТ</u> Курс, семестр <u>третий курс, первый семестр</u>

	Часы	Зачетные
		единицы
Лекции	18	
Практические занятия	18	
Семинарские занятия		
Лабораторные занятия		
Самостоятельная работа	36	
Форма аттестации	Зачёт	
Bcero	72	2

Рабочая программа составлена с учетом требований Федерального государственного образовательного стандарта высшего образования (№ 1005 от 11.08.2016 года,) (номер, дата утверждения) по направлению 18.03.02 «Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии» (шифр) (наименование) для профиля (специализации) «Основные процессы химических производств и химическая кибернетика», на основании учебного плана набора обучаю-(2016, 2017 гг.). шихся Разработчик программы: профессор Каралин Э.А. (должность) (подпись) $(O.N.\Phi)$ Рабочая программа рассмотрена и одобрена на заседании кафедры ОХТ. протокол от 26.10.2017 г. № 3 Харлампиди Х.Э. Зав. кафедрой (O.N.Q.) **УТВЕРЖДЕНО** Протокол заседания методической комиссии ФННХ, к которому относится кафедра-разработчик РП OT 23/16/72017r. № Y Председатель комиссии, профессор Башкирцева Н.Ю. (подпись) $(O.N.\Phi)$ Нач. УМЦ Китаева Л.А. (.О.И.Ф)

1. Цели освоения дисциплины

Целями освоения дисциплины «Термодинамические расчеты химикотехнологических процессов» являются:

- а) формирование знаний в области приложении химической термодинамики к расчетам химико-технологических расчетов,
- б) обучение термодинамическим расчетам возможности протекания химических реакций, оценки теплового эффекта реакции, положения равновесия обратимой реакции, а также нахождения возможностей и путей сдвига равновесия обратимой реакции,
 - в) обучение определению термодинамических функций,
 - г) обучение эксергетическому методу анализа химических производств.

2. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Термодинамические расчеты химико-технологических процессов» относится к вариативной части естественно-научного и профессионального цикла ООП и формирует у бакалавров по направлению подготовки «Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии» набор специальных знаний и компетенций, необходимых для выполнения научно-исследовательской и производственно-технологической деятельности. Для успешного освоения дисциплины «Термодинамические расчеты химико-технологических процессов» бакалавр по направлению подготовки «Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии» должен освоить материал предшествующих дисциплин:

- а) физика
- б) физическая химия
- в) математика.

Знания, полученные при изучении дисциплины «Термодинамические расчеты химико-технологических процессов» могут быть использованы при выполнении выпускной квалификационной работы по направлению подготовки «Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии».

3. Компетенции обучающегося, формируемые в результате освоения дисциплины

ПК-2 способностью участвовать в совершенствовании технологических процессов с позиций энерго - и ресурсосбережения, минимизации воздействия на окружающую среду;

ПК-8 способностью использовать элементы эколого-экономического анализа в создании энерго - и ресурсосберегающих технологий.

В результате освоения дисциплины обучающийся должен:

- 1) Знать:
- а) основы химической термодинамики,
- б) использование принципа аддитивности при определении термодинамических функций,
- в) методы оценки качества химических производств.
 - 2) Уметь:
- а) определять и находить в литературе величины термодинамических функций,
- б) проводить термодинамические расчеты химико-технологических производств,
- в) проводить расчеты показателей эффективности работы производств.
 - 3) Владеть:
- а) основами химической термодинамики, необходимыми при расчетах химических производств.

4. Структура и содержание дисциплины «Термодинамические расчеты химико-технологических процессов»

Общая трудоемкость дисциплины составляет 2,0 зачетных единиц, 72 часа.

№ п/ п	Раздел дисципли- ны	Семестр	Лек- ции	Виды уче работт (в часа Семинар (Практические занятия, лабораторные практикумы)	Ы	СРС	Оценочные сред- ства для проведе- ния промежуточ- ной аттестации по разделам
1	Термодинамические понятия. Первое начало термодинамики	2	2	2	0	4	Коллоквиум
2	Теплоемкость. Энтальпия. Закон Гесса	2	2	2	0	4	Коллоквиум
3	Второе начало термодинамики. Энтропия	2	2	2	0	4	Коллоквиум
4	Функции Гиббса и Гельмгольца. Хими-ческий потенциал	2	2	2	0	4	Коллоквиум
5	Обратимые химические реакции. Состояние равновесия	2	2	2	0	4	Коллоквиум
6	Статистическая сумма по энергети- ческим состояниям молекулы	2	2	2	0	4	Коллоквиум
7	Правила аддитивно- сти свойств моле- кул. Координата	2	2	2	0	4	Коллоквиум

	реакции. Переходное состояние						
8	Эксергетический метод термодинамического анализа	2	2	2	0	4	Коллоквиум
9	Расчеты эксергетического КПД. Классификация потерь эксэргии	2	2	2	0	4	Коллоквиум Индивидуальное задание
		Зачет					

5. Содержание лекционных занятий по темам с указанием формируемых компетенций

№ п/п	Раздел дисциплины	Часы	Тема лекционного занятия	Краткое содержание	Формируемые компетенции
1	Термодинамические понятия. Первое начало термодинами-ки	2	Статистический и термодинамический методы исследова- ния	Основные термодинамические понятия: система, работа, теплота, термодинамические функции	ПК-2 ПК-8
2	Теплоемкость. Энтальпия. Закон Гесса	2	Теплоемкости при постоянном давлении и объеме. Энтальпия	Энтальпии химической реакции, образования и сгорания. Закон Гесса и энтальпия реакции. Выводы из закона Гесса. Температурная зависимость энтальпии реакции	ПК-2 ПК-8
3	Второе начало термодинамики. Энтропия	2	Второе начало термодинамики. Энтропия с термодинамической точки зрения	Энтропия как мера упорядоченности системы. Направление спонтанных процессов. Изменение энтропии с температурой	ПК-2 ПК-8
4	Функции Гиббса и Гельмгольца. Химический потенциал	2	Функции Гельм-гольца и Гиббса. Химический потенциал	Возможность протекания химической реакции при постоянных объеме и температуре, или при постоянных давлении и температуре. Зависимость функции Гиббса химической реакции от температуры и давления. Химический потенциал	ПК-2 ПК-8
5	Обратимые химические реакции. Состояние равновесия	2	Химическое равновесие	Константа равновесия. Влияние температуры и давления на положение равновесия обратимой химической реакции	ПК-2 ПК-8
6	Статистическая сум- ма по энергетиче- ским состояниям мо- лекулы	2	Статистическая сумма по энергетическим состояниям молекулы.	Общий подход к определению статистических сумм молекул. Поступательная, вращательная, колебательная и электронная энергии молекулы. Квантование энергии в микромире	ПК-2 ПК-8
7	Правила аддитивно- сти свойств молекул. Координата реакции.	2	Правила аддитивности свойств молекул	Аддитивность свойств химических связей. Аддитивность свойств групп	ПК-2 ПК-8

	Переходное состояние			(фрагментов молекулы). Поверхности потенциальной энергии и химические реакции. Координата реакции и переходное состояние. Образование и распад активированного комплекса	
8	Эксергетический метод термодинамического анализа	2	Термодинамический анализ химических производств	Тепловой баланс и тепловой коэффициент полезного действия. Эксергетический метод термодинамического анализа. Изменение эксергии при физических и химических процессах. Химическая эксергия.	ПК-2 ПК-8
9	Расчеты эксергетического КПД. Классификация потерь эксэргии	2	Изменение эксэргии при физических и химических процессах. Химическая эксэргия	Методика расчета эксэргии Я. Шаргута. Эксергетический баланс и эксергетический коэффициент полезного действия	ПК-2 ПК-8

6. Содержание практических занятий

Целью практических занятий является привитие умений и навыков практической деятельности по изучаемой дисциплине.

Задачами практических занятий являются:

- закрепление, углубление, расширение и детализация знаний студентов при решении конкретных задач;
- развитие познавательных способностей, самостоятельности мышления, творческой активности;
- овладение новыми методами и методиками изучения конкретной учебной дисциплины;
- выработка способности логического осмысления полученных знаний для выполнения заданий;
- обеспечение рационального сочетания коллективной и индивидуальной форм обучения.

№ п/п	Раздел дисци- плины	Часы	Тема практического занятия	Формируемые компетенции
1	Термодинамиче- ские понятия. Первое начало термодинамики	2	Статистический и термодинамический методы ис- следования. Энергия молекулы. Сумма по состоя- ниям. Современный смысл понятия «теплота». Термодинамические функции	ПК-2 ПК-8
2	Теплоемкость. Энтальпия. Закон Гесса	2	Зависимость теплоёмкости системы от условий теплопередачи. Роль энтальпии в химической термодинамике. Анализ выводов из закона Гесса. Примеры использования выводов из закона Гесса. Разбор примеров определения энтальпии реакции при различных температурах	ПК-2 ПК-8
3	Второе начало термодинамики. Энтропия	2	Физический смысл термодинамической функции «энтропия». Мера порядка в термодинамической системе. Роль второго начало термодинамики в окружающем мире. Компенсационный эффект в термодинамике химических реакций. Направление	ПК-2 ПК-8

			спонтанных процессов. Изменение энтропии с температурой	
4	Функции Гиббса и Гельмгольца. Химический потенциал	2	Роль функции Гиббса в химической термодинами- ке. Оценка возможности протекания химической реакции при различных условиях. Нахождение за- висимости функции Гиббса химической реакции от температуры и давления. Анализ понятия «химиче- ский потенциал»	ПК-2 ПК-8
5	Обратимые химические реакции. Состояние равновесия	2	Динамическое равновесие в обратимых химических реакциях. Константа равновесия и энергия Гиббса. Разбор расчетов влияние температуры на положение равновесия обратимой химической реакции. Использование физических методов исследования и контроля в химической технологии	ПК-2 ПК-8
6	Статистическая сумма по энергетическим состояниям молекулы	2	Разбор примеров определение термодинамических функций по статистической сумме по энергетическим состояниям молекулы. Квантование энергии микрочастиц. Общий подход к определению статистических сумм молекул. Поступательная, вращательная, колебательная и электронная энергии молекулы	ПК-2 ПК-8
7	Правила аддитив- ности свойств мо- лекул. Координата реакции. Переход- ное состояние	2	Использование правил аддитивности свойств молекул для расчетов термодинамических функций. Разбор и анализ таких расчетов. Определение вида поверхности потенциальной энергии химические реакции. Анализ протекания реакции по ее поверхности потенциальной энергии. Задача определения структуры переходного состояния и динамики его образования и распада в реальном масштабе времени	ПК-2 ПК-8
8	Эксергетический метод термодина- мического анализа	2	Анализ тепловых балансов и тепловых коэффициентов полезного действия. Достоинства эксергетического метода термодинамического анализа. Оценка изменений эксэргии при физических и химических процессах	ПК-2 ПК-8
9	Расчеты эксергетического КПД. Классификация потерь эксэргии	2	Методика расчета эксэргии Я. Шаргута. Достоинства эксергетического баланса и эксергетического коэффициента полезного действия	ПК-2 ПК-8

7. Содержание лабораторных занятий Лабораторных занятий учебным планом не предусмотрено.

8. Самостоятельная работа бакалавра

No	Темы, выносимые на	Часы	Форма СРС	Формируемые ком-
Π/Π	самостоятельную работу			петенции
1	Термодинамические по-	4	Изучение материалов лекций, основной и	ПК-2
	нятия. Первое начало		дополнительной литературы. Выполне-	ПК-8
	термодинамики		ние типового расчета	
2	Теплоемкость. Энталь-	4	Изучение материалов лекций, основной и	ПК-2
	пия. Закон Гесса		дополнительной литературы. Выполне-	ПК-8
			ние типового расчета	
3	Второе начало термоди-	4	Изучение материалов лекций, основной и	ПК-2
	намики. Энтропия		дополнительной литературы. Выполне-	ПК-8
			ние типового расчета	
4	Функции Гиббса и Гель-	4	Изучение материалов лекций, основной и	ПК-2
	мгольца. Химический		дополнительной литературы. Выполне-	ПК-8
	потенциал		ние типового расчета	

5	Обратимые химические реакции. Состояние равновесия	4	Изучение материалов лекций, основной и дополнительной литературы. Выполнение типового расчета	ПК-2 ПК-8
6	Статистическая сумма по энергетическим состояниям молекулы	4	Изучение материалов лекций, основной и дополнительной литературы. Выполнение типового расчета	ПК-2 ПК-8
7	Правила аддитивности свойств молекул. Координата реакции. Переходное состояние	4	Изучение материалов лекций, основной и дополнительной литературы. Выполнение типового расчета	ПК-2 ПК-8
8	Эксергетический метод термодинамического анализа	4	Изучение материалов лекций, основной и дополнительной литературы. Выполнение типового расчета	ПК-2 ПК-8
9	Расчеты эксергетического КПД. Классификация потерь эксэргии	4	Изучение материалов лекций, основной и дополнительной литературы. Выполнение типового расчета	ПК-2 ПК-8

9. Использование рейтинговой системы оценки знаний.

При оценке результатов деятельности обучающихся в рамках дисциплины «Термодинамические расчеты химико-технологических процессов» используется рейтинговая система. Рейтинговая оценка формируется на основании текущего и промежуточного контроля. Максимальное и минимальное количество баллов по различным видам учебной работы описано в положении о рейтинговой системе.

	Кол-во	Min, баллов	Мах, баллов
Оценочные средства			
Коллоквиум	9	4	18
Контрольная работа	4	56	82
Итого:		60	100

При изучении дисциплины предусматривается выполнение четырех контрольных работ и проведение девяти коллоквиумов. Общее максимальное количество баллов по всем видам оценочных средств равно **100**.

10. Информационно-методическое обеспечение дисциплины 10.1. Основная литература

При изучении дисциплины «<u>Термодинамические расчеты химико-технологических процессов»</u> в качестве основных источников информации рекомендуется использовать следующую литературу:

Основные источники информации	Кол-во экз.			
1. Кузнецова, Ида Михайловна. Общая химическая технология. Основные	100	ЭКЗ.	В	УНИЦ
концепции проектирования химико-технологических систем [Учебники] :	КНИ	ТУ		
учебник для студ. вузов, обуч. по химтехнол. напр. подгот. и спец. / под				
ред. Х.Э. Харлампиди .— 2-е изд., перераб. — СПб. ; М. ; Краснодар : Лань,				
2014. — 381 с. : ил. — (Учебники для вузов. Специальная литература) .—				
Библиогр.: с.371 (23 назв.). Указ.: с.372-379.				
2. Кузнецова, Ида Михайловна. Общая химическая технология. Методоло-	100	ЭКЗ.	В	УНИЦ
гия проектирования химико-технологических процессов [Учебники] : учеб-	КНИ	ТУ		
ник для студ. вузов, обуч. по химтехнол. напр. подг. и спец. / под ред. Х.Э.				
Харлампиди .— 2-е изд., перераб. — СПб. ; М. ; Краснодар : Лань, 2013 .—				
448 с. : ил. — (Учебники для вузов. Специальная литера-тура) .— Библиогр.				

в конце глав.				
3. Елиманова, Галина Геннадьевна. Исследование равновесия в системах газ-	66	ЭКЗ.	В	УНИЦ
жидкость: теоретические основы и экспериментальные методики. Модели-	KHI	1 TY		
рование химико-технологических процессов [Учебники] : учеб. пособие /				
Г.Г. Елиманова [и др.] ; Казан-ский нац. исслед. технол. ун-т .— Казань :				
Изд-во КНИТУ, 2016 .— 86, [2] с. — Библиогр.: с.81-86 (68 назв.).				
4. Елиманова, Галина Геннадьевна. Исследование равновесия в системах газ-	Эле	ктрон	ная	библио-
жидкость: теоретические основы и экспериментальные методики. Модели-	тека	у УНИ	ЦК	НИТУ
рование химико-технологических процессов [Учебники] : учеб. пособие /	http	://ft.ks	tu.ru	<u>/ft/Elim</u>
Г.Г. Елиманова [и др.] ; Казан-ский нац. ис-след. технол. ун-т .— Казань :	anov	<u>va-</u>		
Изд-во КНИТУ, 2016 .— 86, [2] с. — Библиогр.: с.81-86 (68 назв.).	Issle	edo-		
	vani	e_ravi	nove	siya_v_
		emakh.	-	1
	Дос	туп с	IP	адресов
	KHI	ИТУ		

10.2. Дополнительная литература

В качестве дополнительных источников информации рекомендуется использовать следующую литературу:

Дополнительные источники информации	Кол-во экз.
Карапетьянц, Михаил Христофорович. Химическая термодинами-	83 экз. в УНИЦ КНИТУ
ка [Учебники]: Учеб. пособие / М.Х. Карапетьянц. — 3-е изд. /	
перераб. и доп. — М.: Химия, 1975. — 548с.: ил. — Библиогр.:	
c.522-536.	
Ремизов, А.Б. Термодинамические расчеты химико-	59 экз. в УНИЦ КНИТУ
технологических процессов [Методические пособия] : тексты лек-	
ций / А.Б. Ремизов ; Казан. гос. технол. ун-т .— Казань, 2006 .—	*
137, [3] с. : ил. — Библиогр.: с.137-138 (8 назв.).	3
Жоров, Юрий Моисеевич. Термодинамика химических процессов:	3 экз. в УНИЦ КНИТУ
нефтехимический синтез, переработка нефти, угля и природного	
газа [Справочники] : справочник .— М. : Химия, 1985 .— 459 с. —	
Библиогр.: с.457-459 (77 назв.).	

10.3. Электронные источники информации

При изучении дисциплины «<u>Термодинамические расчеты химико-технологических процессов»</u> в качестве электронных источников информации, рекомендуется использовать следующие источники:

Электронный каталог УНИЦ КНИТУ – режим доступа: http://ruslan.kstu.ru/

Электронная библиотека УНИЦ КНИТУ — режим доступа: http://ft.kstu.ru/ft/

Источники в электронном виде, имеющиеся в Интернет в свободном доступе:

The National Institute of Standards and Technology (NIST), США. - Режим доступа: https://www.nist.gov

Согласовано:

Зав. сектором ОКУФ «казанский рацион

ФЕДЕРАЛЬНОЕ ГОХУДИСТВЕННОЕ БОДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВЛЕНИЯ ОБРАЗОВЛЕНИЯ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТЬ У ЧЕБИО НАУЧНЫЙ ИНПОРМИЛИЕНТЫ И ЧЕНТО

11. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

Оценочные средства для проведения текущего контроля успеваемости, промежуточной аттестации обучающихся и итоговой (государственной итоговой) аттестации разрабатываются согласно положению о Фондах оценочных средств, рассматриваются как составная часть рабочей программы и оформляются отдельным документом.

12. Материально-техническое обеспечение дисциплины.

- 1. Лекционные занятия:
- а. комплект электронных презентаций;
- b. аудитория, оснащенная презентационной техникой (проектор, экран).
 - 2. Практические занятия:
- а. комплект электронных презентаций;
- b. аудитория, оснащенная презентационной техникой (проектор, экран);
- с. пакеты ПО общего назначения (текстовые редакторы, графические редакторы).
 - 3. Прочее
- а. рабочее место преподавателя, оснащенное компьютером с доступом в Интернет.

13. Образовательные технологии

Доля занятий, проводимых в интерактивных формах в учебном процессе, составляет 18 часов, включая следующие виды интерактивных форм обучения:

- интерактивная лекция;
- проблемная лекция;
- управляемая дискуссия;
- коллоквиум.

Лист переутверждения рабочей программы

Рабочая программа по дисциплине «Термодинамические расчеты химикотехнологических процессов» пересмотрена на заседании кафедры «общей химической технологии»

№п/п	Дата переутверждения РП (протокол заседания кафедры №от20) 06.09. 2018 г., протокол №1	Наличие изменений нет	Наличие изменений в списке литературы нет	Подпись разработ- чика РП	Подпись заведующего кафедрой	Подпись начальника УМЦ/ОМг/ОАиД