Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Казанский национальный исследовательский технологический университет» (ФГБОУ ВО «КНИТУ»)

УТВЕРЖДАЮ

Проректор по УР

А. В. Бурмистров

2018 г.

РАБОЧАЯ ПРОГРАММА

По дисциплине Б1.Б.13 «Физическая химия»

Направление подготовки: 18.03.02 «Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии»

Профиль подготовки: «Охрана окружающей среды и рациональное использование природных ресурсов»

Институт, факультет: Инженерный химико-технологический институт (ИХТИ). Факультет экологической технологической и информационной безопасности

Квалификация выпускника

бакалавр

Форма обучения

очная

Кафедра-разработчик рабочей программы: Кафедра физической и коллоидной химии

Курс, семестр: 2 курс, 3 и 4 семестры

	Часы	Зачетные единицы
Лекции	36	1
Лабораторные занятия	63	1,75
Практические занятия	18	0,5
Самостоятельная работа	54	1,5
Форма аттестации:	45	1,25
3 семестр – экзамен		
4 семестр – зачет		
Всего	216	6

Рабочая программа составлена с учетом требований Федерального государственного образовательного стандарта высшего образования № 227 от 12.03.2015 по направлению 18.03.02 «Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии».

Профиль подготовки: «Охрана окружающей среды и рациональное использование природных ресурсов» на основании учебного плана набора обучающихся 2017, 2018 г.

Разработчик программы: Доцент Л. А. Альметкина
Рабочая программа рассмотрена и одобрена на заседании кафедры Физической и коллоидной химии протокол от 04.09.2018 г. № 1
Зав. кафедрой, профессор Ю. Г Галяметдинов
СОГЛАСОВАНО
Протокол заседания методической комиссии института ИХТИ, реализующего подготовку образовательной программы от <u>Ш 09</u> 2018 г. № <u>⊀</u> Председатель комиссии, профессор В. Я. Базотов
УТВЕРЖДАЮ
Протокол заседания методической комиссии факультета ХТПМК, к которому относится кафедра разработчик РП от $\frac{14.09}{1}$ 2018 г. № $\frac{1}{2}$
Председатель комиссии, профессор
Начальник УМЦ, доцент

1. Цели и задачи освоения дисциплины

Физическая химия – наука, объясняющая строение и химические превращения веществ на основе законов физики. Физическая химия является научным фундаментом наук о материалах.

Целями освоения дисциплины Физическая химия являются:

- а) формирование знаний о процессах и явлениях в живой и неживой природе, позволяющих создать о них целостное представление, объяснить закономерности физико-химических превращений, скорость их протекания, влияние различных условий определяющие их направленность, что необходимо для оптимизации природопользования, сохранения природы и улучшения качества окружающей среды;
- б) обучение технологии получения новых материалов с заданными свойствами и достижение максимального выхода с наименьшими материальными и энергетическими затратами, рационального использования природных ресурсов и внедрению наилучших технологий;
- в) обучение способам применения полученных знаний в профессиональной и познавательной деятельности;
 - г) раскрытие сущности процессов, происходящих в химических ситемах;
- д) овладение теоретическими и экспериментальными физико-химическими методами (термодинамическим, статистическим, кинетическим, физико-химическим анализом) для решения практических задач профессиональной направленности.

2. Место дисциплины в структуре ООП ВПО

Дисциплина «Физическая химия» относится к *базовой* части и формирует у бакалавров по направлению подготовки:18.03.02 «Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии» набор специальных знаний и компетенций, необходимых для выполнения *научно-исследовательской*, производственно-технологической, организационно-управленческой и проектной деятельности.

Для успешного освоения дисциплины «Физическая химия» бакалавр должен освоить материал предшествующих дисциплин: математика, информатика, физика, общая и неорганическая химия, органическая химия, физико-химические методы анализа, процессы и аппараты химической технологии, аналитическая химия,

Дисциплина «Физическая химия» является предшествующей и необходима для успешного усвоения последующих дисциплин: общая химическая технология, системы управления химикотехнологическими процессами, основы промышленного производства и промышленная экология.

Знания, полученные при изучении дисциплины «Физическая химия» могут быть использованы при прохождении практик учебной, производственной, преддипломной практик и выполнении выпускных квалификационных работ по направлению подготовки 18.03.02 «Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии»

3. Компетенции обучающегося, формируемые в результате освоения дисциплины.

ОПК-2 способность использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования;

ОПК-3 способность использовать основные естественнонаучные законы для понимания окружающего мира и явлений природы.

В результате освоения дисциплины обучающийся должен:

- 1) Знать:
- основные понятия и фундаментальные законы физической химии;
- теоретические методы физической химии (термодинамический, кинетический, квантовомеханический);
- общие физико-химические закономерности, присущие химическим явлениям и процессам;
- начала термодинамики и основные уравнения химической термодинамики;
- методы термодинамического описания химических и фазовых равновесий в многокомпонентных системах;
- термодинамику растворов электролитов и электрохимических систем;
- уравнения формальной кинетики и кинетики сложных, цепных, гетерогенных и фотохимических реакций;
- основные теории гомогенного, гетерогенного и ферментативного катализа.

2) Уметь:

- определять термодинамические характеристики химических реакций и равновесные концентрации веществ,
- использовать основные химические законы, термодинамические справочные данные и количественные соотношения физической химии для решения профессиональных задач;
- прогнозировать влияние различных факторов на равновесие в химических реакциях;
- рассчитать константу равновесия при различных внешних условиях;
- определить оптимальные условия и направленность процесса в заданных начальных условиях;
- устанавливать границы областей устойчивости фаз в однокомпонентных, бинарных и много-компонентных системах,
- анализировать диаграммы плавкости и кипения, определять относительные количества и составы равновесных фаз в бинарных гетерогенных системах;
- составлять кинетические уравнения в дифференциальной и интегральной форме для кинетически простых реакций и прогнозировать влияние температуры на скорость процесса;
- проводить физико-химический эксперимент на базе типовых методов и приемов исследования, обобщать и обрабатывать экспериментальную информацию.

3) Владеть:

навыками вычисления тепловых эффектов химических реакций в заданных условиях различными методами;

- навыками вычисления констант равновесия химических реакций при заданной температуре;
- навыками определения направления химического процесса;
- методиками основных расчётов по диаграммам плавкости и кипения бинарных систем; методами определения констант скорости реакций различных порядков по результатам кинетического эксперимента;
- навыками самостоятельной работы со справочной химической литературой, с различными информационными источниками (в том числе Internet); физико-химическими определениями, понятиями и терминами для объяснения их применения в практических ситуациях; решения теоретических и практических типовых и системных задач, связанных с профессиональной деятельностью.

4. Структура и содержание дисциплины «Физическая химия»

Общая трудоемкость дисциплины составляет 6 зачетных единиц. 216 ч.

№ п/	Раздел дисциплины	еместр		іды у работ		.)	Оценочные средства для промежуточной аттестации	
П	дисциплины	Ce	Л	Лр	Пз	CPC	промежуточной аттестации	
1	Основы химической термодинамики		6	12	ı	6	лабораторная работа	
2	Термодинамические потен- циалы		4	12	1	6	лабораторная работа	
3	Химическое равновесие		4	12	ı	6	лабораторная работа	
4	Фазовое равновесие		4	18	ı	9	лабораторная работа	
	Всего за семестр		18	54	-	27		
	Форма аттестации 3-	й сем	естр				экзамен	
5	Растворы	4	4	2	-	6	лабораторная работа	
6	Электрохимия	4	6	2	6	6	лабораторная работа, коллоквиум	
7	Химическая кинетика		6	3	12	9	лабораторная работа, коллоквиум	
8	8 Катализ		2	2	-	6	лабораторная работа, коллоквиум	
	всего за семестр	27						
	Форма аттестации 4-і	й сем	естр				зачет	

5. Содержание лекционных занятий по темам (3, 4 семестры, 36 ч.)

1	2	3	4	5	6
№ п/п	Раз- дел	Ч	Тема	Краткое содержание	Компе- тенции

1	2	3	4	5	6
1	Основы химической термодинамики (Тд.)	4	метод Тд. Первый закон Тд.	Основные понятия и процессы в тд. Тд. системы. Основные постулаты. Методы расчета тепловых эффектов химических реакций. Идеальный газ. Температура. Внутренняя энергия, теплота и работа. Первый закон термодинамики. Вывод из первого начала термодинамики для закрытых систем, его следствия. Энтальпия. Теплота сгорания. Теплоты образования. Закон Гесса и его значение. Теплоемкость — виды, зависимость от температуры. Зависимость теплового эффекта реакции от температуры. Уравнение Кирхгоффа в дифференциальной и интегральной формах и его анализ. Таблицы стандартных тд. величин и их использование в термодинамических расчетах.	
	Основы химичес	2	Второй за- кон Тд	Второй закон тд. и его различные формулировки. Уравнение второго начала термодинамики для обратимых и необратимых процессов. Энтропия как критерий направленности самопроизвольных процессов и равновесия в изолированных системах. Изменение энтропии фазового перехода и химической реакции. Зависимость энтропии от температуры. Абсолютные значения энтропии. Объединенное выражение первого и второго начал Тд. для систем постоянного состава.	
2	Тд. потенциалы	4	Энергии Гиббса и Гельм- гольца. Химиче- ский по- тенциал.	Функции Гельмгольца и Гиббса как критерии направленности процесса и равновесия в закрытых системах. Зависимость функций Гельмгольца и Гиббса от параметров состояния. Уравнение Гиббса-Гельмгольца. Понятие химического потенциала. Химический потенциал идеального газа. Парциальные молярные величины. Понятия фугитивности и активности.	ОПК-2 ОПК-3
3	Химическое равновесие	2	Химиче- ское рав- новесие и способы его сме- щения	Химическое равновесие — условия и критерии. Принцип Ле- Шателье. Закон действующих масс. Константа равновесия. Различные способы выражения константы равновесия. Зави- симость константы равновесия от температуры. Уравнение изотермы химической реакции. Уравнения изобары и изохо- ры химической реакции. Уравнение Планка. Химическое равновесие в гетерогенных реакциях.	ОПК-2 ОПК-3
	Химичесн	2	Расчёт химиче- ского рав- новесия		ОПК-2 ОПК-3
4	Фазовое равновесие	2	Одно- и двухком- понент- ные си- стемы. Равнове- сие жид- кость-пар	Основные понятия. Общие условия равновесия в гетерогенных системах. Правило фаз Гиббса. Уравнение Клапейрона - Клаузиуса и его применение. Диаграмма «состав – свойство». Однокомпонентные системы. Законы Рауля и Генри. Идеальные и неидеальные растворы. Равновесие жидкостьпар в двухкомпонентной системе, компоненты которой взаимно растворимы. Законы Коновалова. Азеотропные смеси и их свойства. Равновесные составы пара и жидкости. Различные виды фазовых диаграмм. Виды перегонки. Основы фракционной перегонки.	ОПК-2 ОПК-3

1	2	3	4	5	6
		2	Равнове-	Равновесие кристаллы - расплав. Термический анализ. Диа-	ОПК-2
			сие кри- сталлы - расплав в двухком-	граммы состояния (плавкости) двухкомпонентных систем и их анализ на основе правила фаз. Бинарные системы изоморфных, неизоморфных компонентов, с образованием эвтектики, перитектики, твёрдых растворов. Правило рычага.	ОПК-3
			понентной системе		
			Коллига-	Растворы различных классов. Идеальные растворы в различ-	ОПК-2
5	Растворы	4	тивные свойства растворов. Ограниченная растворимость	ных агрегатных состояниях и общее условие идеальности растворов. Изменение температуры затвердевания и кипения растворов. Коллигативные свойства растворов. Криоскопия. Уравнение Шредера. Осмос. Трехкомпонентные системы. Треугольник Гиббса Кривые расслоения. Коэффициент распределения вещества между двумя несмешивающимися жидкостями.	ОПК-3
	ОХИМИЯ	2	Электро- литы. Электри- ческая проводи- мость рас- творов электро- литов	Определение теоретической электрохимии, ее разделы и связь с задачами прикладной электрохимии. Электролиты и неэлектролиты. Основные положения теории электролитической диссоциации Аррениуса. Недостатки этой теории. Степень диссоциации электролитов. Константа диссоциации слабого электролита. Закон разведения Оствальда. Понятия средней активности и среднего коэффициента активности; их связь с активностью и коэффициентом активности отдельных ионов. Теории Дебая-Гюккеля. Ионная сила растворов. Закон ионной силы. Удельная и эквивалентная электропроводимость и их зависимость от концентрации. Числа переноса. Подвижности ионов. Закон Кольрауша. электрофоретический и релаксационный эффекты.	ОПК-2 ОПК-3
6	Электрохимия	2	Электрод- ные процес- сы	Двойной электрический слой. Скачки потенциала в электрохимической системе. Понятие электродного потенциала. Условный потенциал. Электродные процессы. Гальванический элемент. Электрохимические цепи, правила их записи. Обратимые электрохимические цепи. Электродвижущая сила гальванического элемента (ЭДС). Стандартный водородный электрод. Связь ЭДС с функцией Гиббса. Уравнение Нернста.	
		2	Современ- ные хими- ческие ис- точники тока	Классификация электродов и электрохимических цепей. Электроды сравнения. Потенциометрический метод. Определение коэффициентов активности, чисел переноса, констант равновесия, произведения растворимости на основе измерений ЭДС. Термодинамика гальванического элемента. Первичные и вторичные источники тока.	
	тика	2	Химическая кинетика	Скорость и порядок реакции. Кинетические кривые. Время полупревращения. Необратимые различных порядков. Определение констант скорости из опытных данных. Методы определения порядка реакции и вида кинетического уравнения.	ОПК-3
7	Химическая кинетика	2	Сложные реакции	Принцип независимости протекания элементарных стадий. Методы составления кинетических уравнений. Обратимые реакции первого порядка. Определение элементарных констант из опытных данных. Параллельные и последовательные реакции на примере двух необратимых реакций первого порядка. Принцип квазистационарности.	
	$\mathbf{X}_{\mathbb{I}}$	2	Константа скорости хим. реак-	Уравнение Аррениуса. Опытная энергия активации. Путь реакции. Переходное состояние. Основные допущения теории активированного комплекса и область его применимости.	

1	2	3	4	5	6
			ции	Трансмиссионный коэффициент. Теория соударений в химической кинетике. Ее приближенная и более строгая формулиров-	
				ка. Стерический множитель.	
8	Катализ	2	Катализ	Катализ. Общие принципы катализа. Роль катализа в химии. Основные промышленные каталитические процессы. Примеры механизмов каталитических процессов. Гомогенный катализ. Кислотно-основной катализ. Гетерогенный катализ. Определение скорости гетерогенной каталитической реакции.	ОПК-3

6. Содержание практических занятий (4 семестр, 18 ч.)

Цель проведения практических занятий по дисциплине «Физическая химия» – научить обучающихся применять основные законы, уравнения, формулы физической химии для расчёта различных термодинамических и кинетических параметров химических процессов в дальнейшей профессиональной деятельности.

Практические занятия должны помочь обучающимся в овладении навыками составления кинетических уравнений в дифференциальной и интегральной форме для кинетически простых реакций, методами определения констант скорости реакций различных порядков по результатам кинетического эксперимента. Обучающиеся должны уметь прогнозировать влияние температуры, среды, концентрации реагента и катализатора на скорость процесса.

Практические занятия должны способствовать овладению и умению навыками

- расчётов основных характеристик растворов электролитов таких, как степень и константа диссоциации, коэффициент активности, коэффициент электропроводности,
- умению применять основные законы и уравнения электрохимии для расчёта произведений растворимости солей, констант равновесия реакций, константы и степени гидролиза соли, термодинамических характеристик гальванических элементов,
- самостоятельной работы со справочной химической литературой, с различными информационными источниками (в том числе Internet).
 - систематизации, закрепления и углубления теоретических знания по дисциплине.

№ п/п	Раздел дисципли- ны	ч.	Тема практического занятия	Краткое содержание	Компе- тенции	
1		4	Электропроводность и константа диссоциации электролитов.	Константа и степень диссоциации. Закон разведения Оствальда. Основы теории Дебая – Хюккеля. Электрическая прово-		
2	Электро- химия	2	эдс гэ	димость. Кондуктометрия. Электролиз, законы Фарадея. Числа переноса. Электрохимический потенциал. Двойной электрический слой. Уравнение Нернста. ЭДС.		
3		4	Кинетика гомогенных химических реакций.	Кинетика простых реакций. Методы		
4	Химиче-	4	Кинетика гетерогенных химических реакций	определения порядка химической реакции. Кинетика сложных гомогенных и цепных реакций. Лимитирующая стадия.	OTHE 2	
5	ская кине- тика и ка- тализ	4	Кинетика и катализ разложения перекиси водорода	Зависимость скорости простых и сложных реакций от температуры. Правило Вант - Гоффа. Уравнение Аррениуса. Энергия активации. Теории активных столкновений и абсолютных скоростей химических реакций. Катализ.	ОПК-2	
Bce	ΓΟ	18				

7. Содержание лабораторных занятий (3 и 4 семестры, 63 ч.)

Целью проведения лабораторных работ по дисциплине «Физическая химия» является формирование:

- практических умений и навыков обращения с различными приборами, установками, лабораторным оборудованием, аппаратурой, которые могут составлять часть профессиональной практической подготовки;
- исследовательских умений: наблюдать, сравнивать, анализировать, устанавливать зависимости, делать выводы и обобщения, самостоятельно вести исследование, оформлять и статистически обрабатывать результаты. Уметь планировать эксперимент.

Лабораторные занятия — по дисциплине «Физическая химия» проводятся в специально оборудованных лабораториях с применением необходимых средств обучения: лабораторного оборудования, приборов, образцов для исследований, методических пособий, компьютеров и учебнолабораторных компьютерных комплексов «Химия».

№ п/п	Разделы дисциплины	Часы	Наименование лабораторной работы	Формируемые компетенции
	Основы химиче-	6	Вводное занятие.	
1	ской тд.	6	Определение теплового эффекта реакции растворения соли методом калориметрии.	
	Тармо нимомина	7	Определение теплового эффекта реакции нейтрализации сильной кислоты сильным основанием.	
2	Термодинамиче- ские потенциалы	7	Расчёт тепловых эффектов физических и химических превращений. Расчет термодинамических потенциалов.	
	Vimiliachoe pap	6	Изучение химического равновесия в гомогенных системах.	
3	Химическое равновесие	4	Расчёт характеристических термодинамических функций.	
		4	Расчёт химического равновесия.	
4	Фазовое равно-	7	Расчёты по фазовым диаграммам равновесия «кристаллы - расплав».	ОПК-2 ОПК-3
	весие	7	Изучение фазового равновесия «жидкость – пар».	
5	Растворы	2	Определение коэффициента распределения вещества.	
6	Электрохимия	1	Определение константы диссоциации слабого электролита.	
		2	Определение ЭДС гальванического элемента.	
		1	Изучение кинетики реакции инверсии сахарозы.	
7	Химическая ки- нетика	1	Изучение кинетики реакции омыления уксусно-этилового эфира.	
8	Катализ	2	Изучение кинетики разложения перекиси водорода на твердых катализаторах.	
Bcer	0	63		

8. Самостоятельная работа бакалавра (54 ч.)

Самостоятельная работа бакалавра осуществляется при подготовке ко всем видам учебных занятий. Практические занятия и самостоятельная подготовка идут параллельно с лекционным курсом, что позволяет легче понять логику и связь между разными разделами физической химии. При проработке лекционного материала бакалаврам рекомендуются руководства и пособия, составленные на кафедре, предусматривающие активную проработку теоретического курса. Подготовка к каждому занятию включает написание конспекта по литературным источникам и лекционному материалу. Домашние задания к каждому занятию предполагают индивидуальный набор задач по изучаемому разделу дисциплины, которые предназначены для развития инженерного мыш-

ления и приобретения навыков количественных расчетов важнейших технологических процессов с использованием справочной литературы. Решение каждого пункта задания доводится до численного значения. Самостоятельная подготовка к экзамену или зачету заключается в повторении пройденного материала с использованием конспектов лекций, отчетов по лабораторным работам, литературных источников, сети Интернет.

1	2	3	4		
Темы, выносимые на СРС	Вре-	Форма СРС	Компе- тенции		
1. Основы химической термодинамин	си				
Химическая термодинамика. Расчет основных термодинамических процессов	2	Повторение лекционного материала, чтение учебников, подготовка к лабораторной работе, оформление отчета по	ОПК-2 ОПК-3		
Расчет тепловых эффектов химических реакций Закон Кирхгофа	2	TOPONOTONION NOPOTA HATTOTONIO IL 10			
2. Термодинамические потенциалы		выполнение индивидуального задания			
Расчет термодинамических потенциалов	4	Повторение лекционного материала, выполнение расчетного задания	ОПК-2 ОПК-3		
3. Химическое равновесие					
Расчет константы равновесия и степени диссоциации Зависимость константы равновесия от	2	Повторение лекционного материала, чтение учебников, подготовка к ЛР, оформление отчета по ЛР, подготовка к	ОПК-2 ОПК-3		
температуры	4	защите отчета по ЛР, выполнение индивидуального расчетного задания			
4. Фазовое равновесие					
Расчет равновесного состава смеси Расчет фазового равновесия одноком- понентных систем Анализ фазовых диаграмм состояния	3	Повторение лекционного материала, чтение учебников, подготовка к лабораторной работе, оформление отчета и подготовка к защите отчета по лабора-	ОПК-2 ОПК-3		
двухкомпонентных систем	3	торной работе, выполнение индивиду-			
5. Растворы	ī	-			
Расчет парциальных молярных величин	3	Повторение лекционного материала, выполнение индивидуального расчетно-			
Расчет состава растворов	3	го задания			
6. Электрохимия			0.771.5		
Расчет свойств растворов электролитов	2	Повторение лекционного материала, чтение учебников, подготовка к лабораторной работе, оформление отчета по			
Расчет ЭДС ГЭ	4	лабораторной работе, подготовка к защите отчета по лабораторной работе, выполнение расчетного задания			
7. Химическая кинетика	•				
Способы выражения и определения скорости реакции.	3	Повторение лекционного материала, чтение учебников, подготовка к лабора-			
Методы определения порядка реакции.	3	торной работе, оформление отчета по лабораторной работе, подготовка к за-			
Кинетика и константы скорости гетерогенной реакции. Градиент концентрации, коэффициент диффузии и массоперенос.	3	щите отчета по лабораторной работе, выполнение индивидуального задания			
8. Катализ					

	1		2	3	4
Энергия Ленгмюра.	активации,	уравнение		Повторение лекционного материала, чтение учебников, подготовка, оформление, защита отчета по лабораторной работе, выполнение индивидуального задания. Подготовка к контрольной работе	ОПК-3
Всего			54		

9. Использование рейтинговой системы оценки знаний.

При оценке результатов деятельности студентов в рамках дисциплины «Физическая химия» используется рейтинговая система.

Рейтинговая оценка формируется на основании текущего и итогового контроля. Максимальное и минимальное количество баллов по различным видам учебной работы описано в положении о рейтинговой системе. При изучении дисциплины «Физическая химия» для бакалавров по направлению 18.03.02 «Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии» для профиля «Охрана окружающей среды и рациональное использование природных ресурсов» предусмотрены экзамен в третьем семестре и зачёт в четвертом семестре.

3 семестр. За **экзамен** студент может получить минимум 24 балла и максимум 40 баллов; а за одну лабораторную работу от 36 до 60 баллов (в конце семестра за выполнение нескольких работ высчитывается **средний балл**).

Оценочные средства	Кол-во	Min, баллов	Мах, баллов
Лабораторная работа	1	36	60
Экзамен (тест)	1	24	40
Итого:		60	100

4 семестр. Зачет выставляется только на основании выполненных лабораторных работ, коллоквиума, проводимого на практическом занятии по разделам дисциплины, и итоговой контрольной работы, проводимой на 18 неделе.

Оценочные средства	Кол-во	Min, баллов	Мах, баллов
Лабораторная работа	1	18	30
Коллоквиум	1	18	30
Контрольная работа	1	24	40
Итого:		60	100

За зачет студент может получить минимум 60 и максимум – 100 баллов.

В конце семестра за выполнение нескольких работ вычисляется **средний балл** мин -18 и макс -30 за лабораторную работу и коллоквиум, от 24 до 40 баллов за итоговую контрольную работу. Сумма баллов за выполнение лабораторных и контрольных работ не должна превышать 100 баллов. За **зачет** студент может получить минимум 60 и максимум -100 баллов.

11. Оценочные средства для определения результатов освоения дисциплины «Физическая химия»

Оценочные средства для проведения текущего контроля успеваемости, промежуточной аттестации обучающихся и итоговой (государственной итоговой) аттестации разрабатываются согласно положению о Фондах оценочных средств, рассматриваются как составная часть рабочей программы и оформляются отдельным документом.

12. Материально-техническое обеспечение дисциплины

1. Лекционные занятия:

- а. аудитория, оснащенная презентационной техникой (проектор, экран, компьютер, лазерная указка)
 - b. комплект электронных презентаций/слайдов,

2. Практические занятия:

- а. компьютерный класс с доступом в Интернет,
- b. презентационная техника (проектор, экран, компьютер),

- с. пакеты ПО общего назначения (текстовый редактор Microsoft Word 2010, графический редактор Paint, программа для работы с электронными таблицами Microsoft Excel 2010, программа для создания презентаций Microsoft PowerPoint 2010),
- d. пакеты ПО специального назначения система Moodle для управления учебным процессом, предназначенная для использования в сети Интернет.

3. Лабораторные работы:

- 1. Учебная лаборатория Физической химии, оснащенная компьютерными учебными комплексами «Химия», сахариметрами, термометрами Бекмана, рН-метрами, кондуктометрами, потенциометрами, термометрами, рефрактометрами, поляриметрами, термостатами, калориметрами, приборами Свентославского, водяными банями, установками для титрования, весами электронными, набором электродов, химической посуды и реактивов.
 - 2. шаблоны отчетов по лабораторным работам.

4. Прочее:

- а. рабочее место преподавателя, оснащенное компьютером с доступом в Интернет,
- b. рабочие места студентов, оснащенные компьютерами с доступом в Интернет, предназначенные для работы в электронной образовательной среде.

13. Образовательные технологии

Удельный вес занятий, проводимых в интерактивных формах для дисциплины **«Физическая химия»** по направлению подготовки 18.03.02 «Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии» составляет 44 ч.

10. Информационно-методическое обеспечение дисциплины «Физическая химия» 20018 10.1 Основная литература:

Основные источники информации		Количество	
		экземпляров	
1. Физическая химия. Кн.1: Основы химической термодинамики. Фазовые равно-	200	ЭКЗ.	В
весия / Г.В. Булидорова [и др.] М. : КДУ : Университет. кн., 2016 515 с. : ил.	УНИЦ І	КНИТУ	r
- ISBN 978-5-91304-600-0 ISBN 978-5-91304-599-7.			
2. Физическая химия. Кн.2: Электрохимия. Химическая кинетика / Г.В. Булидо-	200	ЭКЗ.	В
рова [и др.] М.: КДУ: Университет. кн., 2016 456 с.: ил. — ISBN 978-5-	УНИЦ І	КНИТУ	,
91304-599-7 ISBN 978-5-91304-601-7 (Кн.2).			
3. Булидорова, Г.В Физическая химия/ Барабанов, В.П.; Галяметдинов, Ю.Г.;	70 экз. 1	в УНИІ	Į
Ярошевская, Х.М Казань: Изд-во КНИТУ, 2012 392, [3] с ISBN: 978-5-7882-	КНИТУ	-	
1367-5.			

10.2 Дополнительная литература:

Дополнительные источники информации	Количество	
дополнительные источники информации	экземпляров	
4. Эткинс, Питер. Физическая химия/ де Паула, Джулио М.: Мир, 2007 494 с	3 экз. в УНИЦ	
ISBN: 5-03-003786-1.	КНИТУ	
5. Определение порядка, константы скорости и энергии активации элементарных	70 экз. в УНИЦ	
реакций / Г.В. Булидорова [и др.] ; Казан. нац. исслед. технол. ун-т Казань :	КНИТУ	
Изд-во КНИТУ, 2015 83 с. : ил Библиогр.: с.83 (7 назв.) ISBN 978-5-7882-		
1681-2.		
6. Коллигативные свойства растворов / А.В. Билалов, Г.В. Булидорова, С.В. Кру-		
пин ; Казанский нац. исслед. технол. ун-т Казань : Изд-во КНИТУ, 2016 114,	КНИТУ	
[2] с. : ил Библиогр.: с.113 (9 назв.) ISBN 978-5-7882-1894-6.		
7. Павличенко, Л.А Термический анализ двухкомпонентных систем/ Булидоро-	20 экз. на ка-	
ва, Г.В.; Галяметдинов, Ю.Г Казань: 2013 104 с ISBN: 978-5-7882-1379-8.	федре	
8. Физическая химия / Н.М. Селиванова [и др.]; Казанский нац. исслед. технол.	66 экз. в УНИЦ	
ун-т Казань : Изд-во КНИТУ, 2016 185, [3] с. : ил Авт. указаны на обороте	КНИТУ	
тит. л Библиогр.: с.177.		
9. Первый и второй законы термодинамики: учебметод. пособие / Г.В. Булидо-	26 экз. в УНИЦ	
рова, К.А. Романова, Ю.Г. Галяметдинов ; Казанский нац. исслед. технол. ун-т	КНИТУ	
Казань : Изд-во КНИТУ, 2017 82, [2] с. : ил Библиогр.: с.82 (12 назв.) ISBN		
978-5-7882-2131-1.		

10.3 Электронные источники информации

Электронный каталог УНИЦ КНИТУ. — Режим доступа: http://ruslan.kstu.ru/
Электронная библиотека УНИЦ КНИТУ. — Режим доступа: http://ft.kstu.ru/ft/
Научная электронная библиотека eLIBRARY.RU. — Режим доступа: http://elibrary.ru/defaultx.asp
Образовательный портал по химии "HIMUS" [Электронный ресурс]. — Режим доступа: http://himus.umi.ru/

Сог. СОГЛАСОВАНО:

Зав.с Зав.сектором ОКУФ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ ТИЕЖДЕНИЕ ВЫСШЕГО
«КАЗАНСКИЙ НА ИНОНАЛЬНИЯ НЕСЛЕДОВАТЕЛЬСКИЙ ТЕУБООГИТЕКТЫ УНИВЕРСИТЕТЬ

У ЧЕОТНО-НИ УЧНЫЙ ЦЕНТОР

И.И. Усольцева

Лист переутверждения рабочей программы

Рабочая программа по дисциплине <u>«Физическая химия»</u> пересмотрена на заседании кафедры Физической и коллоидной химии

№ п/п	Дата переутверждения РП (протокол заседания кафедры № от 20_)	Наличие измене- ний	Наличие из- менений в списке лите- ратуры	Подпись разработ- чика РП	Подпись заведующего кафедрой	Подпись начальника УМЦ/ОМг/ОАиД