0

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Казанский национальный исследовательский технологический университет» (ФГБОУ ВО «КНИТУ»)

Институт химического и нефтяного машиностроения Кафедра холодильной техники и технологии

> УТВЕРЖДАЮ Проректор по УР А.В.Бурмистров «11» 09 2018 г

РАБОЧАЯ ПРОГРАММА

по дисциплине

Б1.Б.17 «Информационные технологии создания низкотемпературных установок»

Направление подготовки _ 14.03.01 «Ядерная энергетика и теплофизика»

Профиль подготовки «Техника и физика низких температур»

Уровень высшего образования бакалавриат

Форма обучения очная Институт, факультет ЭмТО

Кафедра-разработчик рабочей программы

Холодильная техника и технологии

Курс, семестр 4-й курс, 7 семестр

	Часы	Зачетные единицы
Лекции	18	0,5
Лабораторные занятия	27	0,75
Самостоятельная работа	63	1,75
Форма аттестации	36	7 семестр — экзамен; 1
Bcero	144	4

Рабочая программа составлена с учетом требований Федерального государственного образовательного стандарта высшего образования № 1034 от 11.08.2016г. по направлению 14.03.01 «Ядерная энергетика и теплофизика» для профиля «Техника и физика низких температур», на основании учебного плана набора обучающихся 2015-2018 годов.

Разработчик программы: Доцент кафедры XTиT

А.С.Приданцев

Рабочая программа рассмотрена и одобрена на заседании кафедры холодильной техники и технологии,протокол №1 от 07.09.2018 г.

Зав. кафедрой ХТиТ, профессор

A

И.Г.Хисамеев

УТВЕРЖДЕНО

Протокол заседания методической комиссии факультета ЭМТО 0т 10.09.2018 №1

Председатель заседания методической комиссии факультета ЭМТО, доцент

_ М.С. Хамидуллин

Начальник УМЦ, доцент

т.А. Китаева

1. Цели освоения дисциплины

Целями освоения дисциплины «Информационные технологии создания низкотемпературных установок» являются:

- а) углубленная подготовка в области процессов и аппаратов для производства искусственного холода;
- б) формирование знаний об основах термодинамического расчёта и анализа работы холодильных машины и их отдельных элементов;
- в) подготовка специалистов для профессиональной деятельности в области проектирования и конструирования, эксплуатации и сервисного обслуживания теплообменных аппаратов холодильных установок.

2. Место дисциплины в структуре ООП ВО

Дисциплина «Информационные технологии создания низкотемпературных установок» относится к дисциплинам вариативной части ООП и формирует у бакалавров по направлению подготовки 14.03.01 «Ядерная энергетика и теплофизика» набор специальных знаний и компетенций, необходимых для:

- обобщения, анализа, восприятия информации, постановки цели и выбора путей её достижения;
- способности демонстрировать базовые знания в области естественнонаучных дисциплин и готовности использования основных законов в профессиональной деятельности, применения методов математического анализа и моделирования, теоретического и экспериментального исследования;
- готовности выявления естественнонаучной сущности проблем, возникающих в ходе профессиональной деятельности, и способности привлечь для их решения соответствующий физико-математический аппарат;
- способности к участию в разработке методов прогнозирования количественных характеристик процессов, протекающих в конкретных технических системах на основе существующих методик;
- способности разрабатывать проекты узлов аппаратов новой техники с учётом сформулированных к ним требований, использования в разработке технических проектов новых информационных технологий;

Для успешного освоения дисциплины «Информационные технологии создания низкотемпературных установок» по направлению подготовки «Ядерная энергетика и теплофизика» студент должен освоить материал предшествующих дисциплин:

- Высшая математика
- Физика;
- Химия;
- Механика жидкости и газа;
- Теоретические основы холодильной техники;
- Теплообмен:
- Холодильные машины

Знания, полученные при изучении дисциплины «Информационные технологии создания низкотемпературных установок» могут быть использованы при прохождении преддипломной практики и выполнении выпускных квалификационных работ по направлению подготовки «Ядерная энергетика и теплофизика».

3. Компетенции обучающегося, формируемые в результате освоения дисциплины «Информационные технологии создания низкотемпературных установок»

Выпускник, обучавшийся по направлению подготовки «Ядерная энергетика и теплофизика» образовательной программы подготовки бакалавров профиля «Ядерная энергетика и теплофизика», в соответствии с задачами профессиональной деятельности и целями основной образовательной программы, должен обладать следующими компетенциями:

- а) общепрофессиональными (ОПК):
- способностью осуществлять поиск, хранение, обработку и анализ информации из различных источников и баз данных, представлять ее в требуемом формате с использованием информационных, компьютерных и сетевых технологий (ОПК-1);
- б) профессиональными (ПК): способностью разрабатывать проекты узлов аппаратов с учетом сформулированных к ним требований, использовать в разработке технических проектов новые информационные технологии (ПК-4);

В результате освоения дисциплины обучающийся должен:

- 1) Знать:
- • основную терминологию САПР и в том числе понятия: метапроцедуры проектирования, стратегия проектирования, стадии и этапы проектирования, виды проектирования, проектирование и конструирование, объект проектирования, описание объекта, преобразование описания, проектная процедура, проектная операция, техническое решение;
 - основы системного подхода и методы проектирования сложных систем;
 - составные части и компоненты САПР;
 - основные элементы математического моделирования;
 - методы оптимизации;
- стадии и этапы разработки холодильных установок, холодильных машин и их агрегатов, необходимость и возможности автоматизированного проектирования;
- основные этапы работы при автоматизированном проектировании холодильных машин и установок.
 - 2) Уметь:
- применять на практике принципы блочно-модульного, иерархического проектирования, выполнять синтез и анализ объектов проектирования;
- формулировать требования, предъявляемые к математической модели того или иного объекта, оценивать необходимый (требуемый) уровень;
 - ставить задачу оптимизации объекта проектирования;
 - решать чертежно-конструкторские задачи на ЭВМ;
 - пользоваться периферийными устройствами технического обеспечения САПР;
- разрабатывать конструкторскую документацию в среде чертежнографического редактора КОМПАС 3D.
 - 3) Владеть:
 - методами подбора оптимальных низкотемпературных установок;
 - методами конструирования современных низкотемпературных установок;
 - методами анализа низкотемпературных установок.

4. Структура и содержание дисциплины «Информационные технологии создания

низкотемпературных установок»

№ п/п	Раздел дисциплины	Семестр	Неделя семетра		чебной ра в часах)	іботы	Оценочные сред- ства для проведе- ния промежуточной
		Ď	əo	Лекция	Лабора- торные занятия	CPC	аттестации по разделам
1 2	Введение. Тема 1Цель и задачи дисциплины	7	1	2			
3	Тема 2 Автоматизация конструирования	7	2	2	12	15	
4	Тема 3 Автоматизация проектирования холодильных машин и установок	7	3	2		10	,
5	Тема 4 Системный подход к проектированию	7	4	2		5	Тест П рием лабора- торных работ
6	Тема 5 Структура САПР.	7	5	2		4	
7	Тема 6 Математические модели.	7	6 7 8	6	15	27	
8	Тема 7 Оптимизация объектов проектирования.	7	9	2		2	
		Ітого		18	27	63	Экзамен,36

5.Содержание лекционных занятий по темам

№ п/п	Раздел дисциплины	Ча- сы	Тема лекционного занятия	краткое содержание	Формируе- мые компетен- ции
1	Введение. <u>Тема 1</u> Цель и задачи дисциплины.	2	Введение. Цель и задачи дисциплины.	Условия и причины возникновения САПР. Цели, достигаемые в результате применения САПР связь с другими автоматизированными системами. Классификация объектов проектирования и их параметров. Основные задачи, решаемые при проектировании. Терминология автоматизированного проектирования. Основные этапы разработки объектов и возможности автоматизации проектных процедур и операций. Основные принципы создания САПР: системное единство, развитие, совместимость и стандартизация.	ОПК-1
2	<u>Тема 2</u> Автоматизация конструирования.	2	Автоматизация конструирования.	Проектирование и конструирование. Постановка задачи конструирования. Технические средства, применяемые при автоматизированном конструировании. Понятие о машинной графике. Математическое обеспечение машинной графики. Ввод чертежей, получение чертежей. Современные инструментальные оболочки (пакеты программ) для автоматизации конструкторской работы.	ОПК-1, ПК-4
3	<u>Тема 3</u> Автоматизация проектирования холодильных машин и установок	2	Автоматизация проектирования холодильных машин и установок	«Классический» способ создания холодильных машин и установок (проектирование и доводка). Разработка элементов холодильных машин и установок с помощью САПР. Макетирование холодильных установок на основе 3D моделирования. Информационное обеспечение САПР холодильных машин и установок. Последовательность проектирования. Рабочее проектирование. Выполнение расчетов. Эскизное проектирование. Испытание. Доработка. Перепроектирование.	ОПК-1, ПК-4
4	<u>Тема 4</u> Системный подход к проектированию	2	Системный подход к про- ектированию	Сложные системы. Блочно-иерархический метод проектирования сложных систем. Понятия и принципы современной методологии проектирования. Метапроцедуры проектирования. Стратегии и этапы проектирования	ОПК-1, ПК-4
5	<u>Тема 5</u> Структура САПР	2	Структура САПР	САПР – организационно-техническая система. Комплекс средств автоматизации проектирования. Методическое, лингвистическое, математическое, программное, техническое, информационное и организационное обеспечение САПР. Проектирующие и обслуживающие подсистемы САПР. Банки и базы данных. СУБД	ОПК-1, ПК-4

6	Тема 6 Математические модели	6	Математиче- ские модели	Понятие математической модели. Классификация моделей, Модели детерминированные, стохастические, функциональные и структурные, статические и динамические. Классификация моделей по уровню сложности. Роль математического моделирования в проектировании и доводке изделий. Численные методы решения. Методы уточнения математических моделей. Использование апостериорных моделей в САПР.	ОПК-1, ПК-4
7	Тема 7 Оптимизация объектов проектирования.	2	Оптимизация объектов про- ектирования	Постановка задач оптимизации. Выбор переменных оптимизации. Функции цели (скалярные и векторные), методы решения задач оптимизации с векторной функцией цели. Ограничение при оптимизации. Классификации методов оптимизации. Области применения различных методов оптимизации в САПР. Программные системы оптимизации.	ОПК-1, ПК-4

Лекционные занятия проводятся с использованием инновационной образовательной технологии (в общем 7 часов) — разбор конкретных ситуаций, что позволяет вести диалог с обучающимися по вопросам их будущей специальности. Во время изложения лекционного материала обсуждаются конкретные ситуации, обучающиеся предлагают различные варианты подхода к ситуации, вырабатывается совместное решение, а также обсуждаются вопросы, касающиеся проектирования теплообменного оборудования.

6. Содержание лабораторных занятий

Учебным планом направления подготовки 14.03.01 «Ядерная энергетика и теплофизика» (профиль «Техника и физика низких температур») предусмотрено проведение лабораторных занятий по дисциплине «Информационные технологии создания низкотемпературных установок» для студентов очной формы обучения.

Цель проведения лабораторных занятий — освоение лекционного материала, касающегося изучения автоматизированного расчёта и конструирования элементов и аппаратов низкотемпературных установок. Режим проведения занятий — один раз в неделю по 2 часа.

№ п/п	Раздел дисцип- лины	Ча- сы	Тема лабораторно- го занятия	Краткое содержание	Формируе- мые компе- тенции
1	Автоматиза- ция конст- руирования		Знакомство с основными инструментальными возможностями и интерфейсом приложений.	Освоение принципов работы с основным и контекстным меню действий, командной строкой и кнопками управления, окнами и слоями; индивидуальные настройки рабочей среды и инструментов черчения; вычерчивание геометрических примитивов.	ОПК-1,ПК-4
2	Автоматиза- ция конст- руирования	4	Вычерчивание сложных изобра- жений.	Использование инструментов «зеркало» и «массив». Исправление и трансформация изображения. Нанесение надписей на чертеже, простановка размеров и допусков, штриховка и раскрашивание	ОПК-1,ПК-4
3	Математи- ческие мо- дели.	13	Моделирование простых объектов	Трехмерное (пространственное) моделирование простых объектов	ОПК-1,ПК-4
4	Матема- тические модели.	2	Итоговая (зачетная) работа	Индивидуальное выполнение рабочего чертежа детали или сборочного чертежа узла средней сложности	ОПК-1,ПК-4

7. Содержание практических занятий

Учебным планом направления подготовки 14.03.01 «Ядерная энергетика и теплофизика» (профиль «Техника и физика низких температур») не предусмотрено проведение практических занятий по дисциплине «Информационные технологии создания низкотемпературных установок».

8.Курсовая работа (проект)

Учебным планом направления подготовки 14.03.01 «Ядерная энергетика и теплофизика» (профиль «Техника и физика низких температур») не предусмотрено выполнение курсовой работы (проекта) по дисциплине «Информационные технологии создания низкотемпературных установок».

9. Самостоятельная работа обучающихся

Общая продолжительность самостоятельной работы студентов (СРС), предусмотренная учебным планом направления 14.03.01 «Ядерная энергетика и теплофизика» профиля «Техника и физика низких температур», по дисциплине «Информационные технологии создания низкотемпературных установок», а также распределение учебного времени по разделам дисциплины представлены в таблице 3.

СРС включает следующие виды работ:

- изучение лекционного и дополнительного теоретического материала;
- подготовка к выполнению практических занятий;
- оформление отчетов по практическим занятиям;

По результатам выполнения СРС применяются следующие виды контроля

- предварительный (корректирующая функция) подготовка к практическим занятиям в форме устного опроса;
- текущий (корректирующая функция) усвоение лекционного материала в форме устного опроса и проверки качества ведения конспекта;
- итоговый (констатирующая функция) экзамен по дисциплине.

Темы, выносимые на самостоятельную рабо- ту	Ча c.	Форма самостоятельной работы студента	Фор- мируе- мые компе- тенции
<u>Тема 2</u> Автоматизация конструирования	15	Проработка теоретического материала и подготовка к практическим занятиям. Оформление отчетов по практическим занятиям.	ОПК-1 ПК-4
Тема 3 Автоматизация про- ектирования холодильных машин и установок	10	Проработка теоретического материала и подготовка к практическим занятиям. Оформление отчетов по практическим занятиям.	ОПК-1 ПК-4
<u>Тема 4</u> Системный подход к проектированию	5	Проработка теоретического материала и подготовка к практическим занятиям. Оформление отчетов по практическим занятиям.	ОПК-1 ПК-4
<u>Тема 5</u> Структура САПР	4	Проработка теоретического материала и подготовка к практическим занятиям. Оформление отчетов по практическим занятиям.	ОПК-1 ПК-4
<u>Тема 6</u> Математические модели	27	Проработка теоретического материала и подготовка к практическим занятиям. Оформление отчетов по практическим занятиям.	ОПК-1 ПК-4
<u>Тема 7</u> Оптимизация объектов про- ектирования	2	Проработка теоретического материала и подготовка к практическим занятиям. Оформление отчетов по практическим занятиям.	ОПК-1 ПК-4

10.Использование рейтинговой системы оценки знаний

При оценке результатов деятельности студентов в рамках дисциплины «Информационные технологии создания низкотемпературных установок» предусматривается использование рейтинга оценки знаний.

Рейтинг формируется на основании текущего и промежуточного контроля, в соответствии с Положением о рейтинговой системе КНИТУ.

При изучении дисциплины предусматривается выполнение четырёх лабораторных работ, промежуточный контроль (тестирование) и экзамен . За эти контрольные точки студент может получить максимальное и минимальное количество баллов (см.таблицу 4)

Таблица 4.

Оценочные средства	Міп,баллов	Мах, баллов
Тестирование	12	18
Лабораторные занятия	24	42
Экзамен	24	40
Итого	60	100

Оценочные средства для проведения текущего контроля успеваемости, промежуточной аттестации обучающихся и итоговой аттестации разрабатываются согласно положению о Фондах оценочных средств, рассматриваются как составная часть рабочей программы и оформляются отдельным документом.

11. Информационно-методическое обеспечение дисциплины

При изучении дисциплины «Информационные технологии создания низкотемпературных установок» в качестве основных источников информации рекомендуется использовать следующую литературу:

а) Основная литература

Основные источники информации	Кол-во экз.
1. Автоматизированное проектирование изделий из перспективных материалов [Учебники]: учеб. пособие / Р.Р. Хасаншин, Р.Р. Сафин, А.Х. Шаяхметова; Казан. нац. исслед. технол. ун-т. — Казань: Изд-во КНИТУ, 2015. — 91 с.: ил.	70 экз.в УНИЦ КНИТУ
2.Галяветдинов, Н.Р.Основы автоматизированного проектирования изделий и технологических процессов [Учебники]: учеб. пособие / Казанский нац. исслед. технол. ун-т. — Казань, 2013. — 110, с.: ил.	70 экз.в УНИЦ КНИТУ
3.Компьютерные технологии в машиностроении [Методические пособия]: метод. указ. к лаб. работам. Ч.2 /; Казан. нац. исслед. технол. ун-т; сост.: Р.Г. Хисматов, Р.Г. Сафин, Д.В. Тунцев, Е.В. Хисматова, Э.К. Хайруллина. — Казань: Изд-во КНИТУ, 2015. — 134 с.: ил.	10 экз.в УНИЦ КНИТУ

б) Дополнительная литература

В качестве дополнительных источников информации рекомендуется использовать следующую литературу

зовать еледующую энтературу	
	Кол-во
Дополнительные источники информации	эземпляров
1.Глушаков С.В.Компьютеры, программы, сети [Учебники] :	<mark>3 экз.в</mark>
[учеб. пособие] .— М.; Владимир: АСТ: ВКТ, 2009.— 511 с.:	УНИЦ КНИ-
ил.	<mark>ТУ</mark>
2. Математическое обеспечение САПР [Учебники]: Учеб.пособ.	<mark>1 экз.в</mark>
Ч.2: Метод конечных элементов / А.В. Заболеева-Зотова; Волго-	<mark>УНИЦ КНИ-</mark>
градск.гос.технич.ун-т. — Волгоград, 1998. — 71 с.: ил.	<mark>ТУ</mark>
3.Измерительные информационнные системы : учебник для ву-	<mark>1 экз.в</mark>
зов / Г.Г.Раннев .— М. : Академия, 2010 .— 336 c	УНИЦ КНИ-
306 / 1 .1 .1 аппев .— IVI Академия, 2010 .— 330 с	<mark>ТУ</mark>

в) программное обеспечение и Интернет-ресурсы

При изучении дисциплины «Информационные технологии создания низкотемпера-турных установок» предусмотрено использование следующих электронных источников информации:

- 1. Научная Электронная Библиотека (НЭБ) Режим доступа: http://ft.kstu.ru/ft
- 2. Электронный каталог УНИЦ КНИТУ— Режим доступа: http://ruslan.kstu.ru/
- 3. ЭБС «КнигаФонд» Режим доступа: http://www.knigafund.ru
- 4. ЭБС «Znanium.com» Режим доступа: http://znanium.com
- 5. ЭБС «Лань» Режим доступа: http://e.lanbook.com/books/
- 6. ЭБС «ЮРАЙТ» Режим доступа: https://www.biblio-online.ru
- 7. ЭБС «IPRbooks» Режим доступа: http://www.iprbookshop.ru/
- 8. ЭБС «РУКОНТ» Режим доступа: http://www.rucont.ru
- 9. ЭБС «БиблиоТех» Режим доступа: http//kstu.bibliotech.ru

Согласовано: Зав. сектором

ФЕДЕРАЛЬНОЕ ГОСУДАРСТЗЕПНОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВЛИЯЯ

Учебно-нау ный информационный центр А.А. Володягина

12 Материально-техническое обеспечение дисциплины

«Информационные технологии создания низкотемпературных установок»

В качестве материально-технического обеспечения дисциплины «Информационные технологии создания низкотемпературных установок» используются следующие средства для проведения занятий.

1. Лекционные занятия:

- а) раздаточные материалы в виде рисунков, схем, диаграмм и т.д. по теме лекции;
- б) аудитория, оснащенная презентационной техникой: проектор, экран, ноутбук.

2. Практические занятия:

- а) презентационная техника: проектор, экран, ноутбук;
- б) специализированное ПО Refrigeration Utilities.

3. Прочее:

а) рабочее место преподавателя, оснащенное компьютером с доступом в Интернет.

14. Образовательные технологии

Занятия лекционного типа в объеме 7 аудиторных часов и лабораторного типа в объеме 12 аудиторных часов проводятся с применением интерактивных форм обучения. Общий объём с использованием интерактивных форм обучения при изучении дисциплины «Информационные технологии создания низкотемпературных установок» составляет 19 часов. К применяемым интерактивным формам обучения относятся учебные групповые дискуссии, проведение презентаций, мастер-классы.

СОДЕРЖАНИЕ

<i>1</i> .	Цели освоения дисциплины	3
<i>2</i> .	Место дисциплины в структуре ООП ВО	3
<i>3</i> .	Компетенции обучающегося, формируемые в результате освоения	
	дисциплины	4
<i>4</i> .	Структура и содержание дисциплины	5
<i>5</i> .	Содержание лекционных занятий по темам	6
<i>6</i> .	Содержание практических занятий	7
<i>7</i> .	Содержание лабораторных занятий	8
<i>8</i> .	Курсовая работа(проект)	8
9 .	Самостоятельная работа обучющихся	8
<i>10</i> .	Использование рейтинговой системы оценки знаний	9
<i>11</i> .	. Информационно-методическое обеспечение дисциплины	10
12.	Материально-техническое обеспечение дисциплины	12
<i>13</i> .	Обрзовательные технологии	12