Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Казанский национальный исследовательский технологический университет» (ФГБОУ ВО «КНИТУ»)

УТВЕРЖДАЮ
Проректор по УР
А.В. Бурмистров
« 4 » 2018 г.

РАБОЧАЯ ПРОГРАММА

По дисциплине Б1.В.ДВ.5.2¹, Б1.В.ДВ.4.2² «Техническая термодинамика и теплотехника»

Направление подготов	19.03.01 Биотех	нология	
Профиль подготовки:	Биотехнология ^{1,2} , Пище		
Квалификация (степен		бакалавр	
Форма обучения	очная		
Институт, факультет	ИППБ (Φ ПТ 1 , Φ ПИ 2)		
Кафедра-разработчик	рабочей программы	TOT	
Курс, семестр	2 курс, 4 семестр		

	Часы	Зачетные единицы
Лекции	18	0,5
Практические занятия		
Семинарские занятия		
Лабораторные занятия	36	1
Самостоятельная работа	54	1,5
Форма аттестации	Зачет	
Bcero	108	3

Рабочая программа составлена с учетом требований Федерального государственного образовательного стандарта высшего образования № 193 от 11.03.2015 года, по направлению 19.03.01 «Биотехнология» для профилей «Биотехнология», «Пищевая биотехнология» на основании учебных планов набора обучающихся 2017, 2018 годов.

Разработник программи

ассистент каф. ТОТ (должность) (должность) С.В.Мазанов (Ф.И.О)
Рабочая программа рассмотрена и одобрена на заседании кафедры
протокол от 28.08. 2018 г. №1
Зав. кафедрой, проф. — — — — — — — — — — — — — — — — — — —
СОГЛАСОВАНО
Протокол заседания методической комиссии ИППБТ от ○3 ○9. 18 № 7,
доцент М.А. Поливанов
УТВЕРЖДЕНО
Протокол заседания методической комиссии механического факультета
от 03.09. 2018 г. №7 Председатель комиссии, профессор <u>— А.В. Гаврилов</u>
(подиись) (Ф.И.О.)
Начальник УМЦ, доцент

1. Цели освоения дисциплины

Целями освоения дисциплины «Техническая термодинамика и теплотехника» являются:

- а) формирование знаний о методах преобразования и использования теплоты, а также принципы действия и конструктивные особенности тепловых и холодильных машин, теплои парогенераторов.
- б) подготовка специалистов, владеющих навыками грамотной эксплуатации современного теплового оборудования при максимальной экономии топлива и материалов, интенсификация и оптимизация современных энерготехнологических процессов
- в) на базе термодинамики с привлечением аппарата некоторых других фундаментальных дисциплин осуществляется расчет и проектирование всех тепловых двигателей паровых и газовых турбин, реактивных и ракетных двигателей внутреннего сгорания, а также всевозможного технологического оборудования, как-то: холодильных машин, сушильных, сжижительных, энерготехнологических и других установок.

2. Место дисциплины в структуре образовательной программы

Дисциплина «Техническая термодинамика и теплотехника»_относится к вариативной части ООП и формирует у бакалавров по направлению подготовки/специальности 19.03.01 «Биотехнология» набор знаний, умений, навыков и компетенций для выполнения производственно-технологической, научно-исследовательской, проектной видов деятельности.

Для успешного освоения дисциплины «Техническая термодинамика и теплотехника» бакалавр по направлению подготовки 19.03.01 «Биотехнология» должен освоить материал предшествующих дисциплин:

- а) Математика
- б) Физика

Дисциплина «Техническая термодинамика и теплотехника» является предшествующей и необходима для успешного усвоения последующих дисциплин:

- а) Теоретические основы биотехнологии,
- б) Системы управления технологическими процессами.

Знания, полученные при изучении дисциплины «Техническая термодинамика и теплотехника» могут быть использованы при прохождении практик производственной, преддипломной и выполнении выпускных квалификационных работ по направлению полготовки 19.03.01 «Биотехнология».

3. Компетенции обучающегося, формируемые в результате освоения дисииплины

- 1. (ОПК-2) способностью и готовностью использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования;
- 3. (ОПК-3) способностью использовать знания о современной физической картине мира, пространственно-временных закономерностях, строении вещества для понимания окружающего мира и явлений природы;
- 4. (ПК-2) способностью к реализации и управлению биотехнологическими процессами

В результате освоения дисциплины обучающийся должен:

- 1) Знать: а) закономерности основных термодинамических процессов с идеальным и реальным газами;
 - б) схемы и циклы тепловых машин и холодильных установок, их КПД
- в) принципы оптимизации энерготехнологических схем: принцип «многоступенчатости». Принципы, связанные с входом и выходом энергоносителей. Принципы регенерации и интеграции.
- 2) Уметь: а) определять термодинамические параметры и теплофизические свойства различных газов, водяного пара, хладоагентов и других веществ;
 - б) пользоваться первым и вторым законами термодинамики;
 - в) пользоваться справочной литературой, диаграммами.
- 3) Владеть: а) термодинамическими методами повышения эффективности использования подводимой энергии.

4. Структура и содержание дисциплины «Техническая термодинамика и теплотехника»

Общая трудоемкость дисциплины составляет <u>3</u> зачетные единицы, <u>108</u> часов.

№ п/п	Раздел дисциплины	местр	Виды учебной работы (в часах)				Оценочные средства для проведения промежуточн ой аттестации	
11/11		Cen	Лекц ия	Семинар (Практи- ческое	Плаоораторн	CPC	ой аттестации по разделам	

				занятие)			
	Тема 1. Основные						Тестирование
1	понятия и						
1	определения						
	термодинамики.	4	1	-	-	2	
	Тема 2. Первый						Защита
	закон	4	1,5	-	10	3	лабораторных
	термодинамики.						работ,
2							тестирование,
							решение
							контрольных
							задач
	Тема 3 Основные						Тестирование,
3	термодинамическ				-		решение
)	ие процессы с	4	1,5	-		2	контрольных
	идеальным газом.						задач
	Тема 4. Второй			-	-		Тестирование,
4	закон	4	2			2	решение
•	термодинамики.						контрольных
					2.5		задач
	Тема 5. Реальные	,		-	26		Защита
5	газы.	4	2			7	лабораторных
							работ,
	Т (тестирование
	Тема 6.						Тестирование
	Термодинамика потока. Истечение						
6	и дросселирование						
	газов и паров.	4	2		_	2	
	тазов и паров.	'					
	Тема 7.			_	-		Тестирование
	Термодинамическ	4	2			4	•
_	ий анализ						
7	процессов в						
	компрессорах						
	Тема 8. Циклы						Тестирование,
	двигателей						защита
	внутреннего	4	2	-	-	14	расчетно- графической
8	сгорания (ДВС) и						работы
	газотурбинных						Pacorbi
	установок (ГТУ)						Т
	Тема 9. Циклы	,	1	-	-	4	Тестирование,
9	паросиловых	4	1			4	защита расчетно-
′	установок.						графической
							работы
	Тема 10. Циклы			-	-		
	холодильных	4	3				Тестирование по темам 1-10
	установок.					14	no remain 1-10

ИТОГО	18	-	36	54	Зачет

5. Содержание лекционных занятий по темам с указанием формируемых компетенций и используемых инновационных образовательных технологий.

№ п / п	Раздел дисциплин ы	Ча сы	Тема лекционного занятия	Краткое содержание	Формир уемые компете нции
1	Тема 1. Основные понятия и определени я термодинам ики.	1	Термодинамическая система. Основные параметры состояния. Равновесное и неравновесное состояние.	Уравнение состояния идеального газа. Термодинамические процессы: равновесные и неравновесные, обратимые и необратимые. Изображение термодинамических процессов в ру-диаграмме	ОПК-2, ОПК-3
2	Тема 2. Первый закон термодинам ики.	1,5	Первый закон термодинамики. Теплота и работа как формы передачи энергии. Понятие о внутренней энергии и энтальпии.	Сущность первого закона термодинамики, формулировки и аналитические выражения. Работа проталкивания. Техническая и располагаемая работа. Теплоемкость газов Массовая, объемная и молярная теплоемкости (средняя и истинная, изобарная и изохорная). Зависимость теплоемкости от температуры. Формулы для расчета теплового потока по средним теплоемкостям. Смеси рабочих тел. Способы задания состава смеси, соотношения между массовыми и объемными долями. Вычисление параметров состояния смеси, определение кажущейся молекулярной массы и газовой постоянной смеси, определение парциальных давлений компонентов.	ОПК-2, ОПК-3
3	Тема 3 Основные термодинам ические процессы с идеальным газом.	1,5	Изохорный, изобарный, изотермический и адиабатный процессы их анализ.	Изохорный, изобарный, изотермический и адиабатный процессы их анализ. Изображение в координатах Рv и ТS. Политропные процессы. Основные характеристики политропных процессов. Обобщающее значение политропного процесса.	ОПК-2, ОПК-3
4	Тема 4. Второй закон термодинам	2	Сущность второго закона термодинамики. Основные	Прямые и обратные циклы. Термодинамические КПД и холодильный коэффициент. Циклы Карно и их свойства. Аналитическое	ОПК-2, ОПК-3

	ики.		формулировки	выражение второго закона	
	Тема		второго закона термодинамики. Термодинамические циклы тепловых машин. Свойства реальных	термодинамики. (первый и второй интегралы Клаузиуса) Изменение энтропии в обратимых и необратимых процессах. Принцип возрастания энтропии изолированной системы Философское и статистическое толкования второго закона термодинамики. Формула Больцмана Понятие об эксергии, эксергетический баланс и эксергетический к.п.д Процессы парообразования в PV и TS координатах. Водяной пар Параметры	
5	5.Реальные газы.	2	газов Опыт Эндрюса и уравнение состояния реальных газов. Способы определения коэффициента сжимаемости.	кипящей жидкости, сухого насыщенного пара, влажного насыщенного пара и перегретого пара. Уравнение Клапейрона-Клаузиуса. Анализ процессов в реальных газах с помощью таблицы ТСВП и диаграмм hs и lqp-h	ОПК-2, ОПК-3
6	Тема 6. Термодина мика потока. Истечение и дросселиро вание газов и паров.	2	Уравнение первого закона термодинамики для потока. Понятие о сопловом и диффузорном течении газа. Скорость газа и его массовый расход при адиабатном течении. Связь критической скорости истечения с местной скоростью распространения звука. Критическое отношение давлений.	Условие перехода через критическую скорость. Сопло Ловаля. Расчет процессов истечения реального газа с помощью hs-диаграммы. Действительный процесс истечения. Параметры заторможенного потока. Дросселирование газов и паров. Сущность процесса дросселирования и его уравнение. Изменение параметров в процессе дросселирования. Понятие об эффекте Джоуля - Томпсона. Особенности дросселирования идеального и реального газов. Понятие о температуре инверсии. Практическое использование процесса дросселирования. Условное изображение процесса дросселирования в hS- и TS- диаграммах	ОПК-2, ПК-2
7	Тема 7. Термодина мический анализ процессов в компрессор ах	2	Классификация компрессоров и принцип действия. Изотермическое, адиабатное и политропное сжатия.	Полная работа, затраченная на привод компрессора. Влияние объема вредного пространства на работу компрессоров. Многоступенчатое сжатие. Изображение в Ру- и ТЅ-диаграммах термодинамических процессов, протекающих в компрессорах. Относительный внутренний КПД компрессора. Расчет потерь энергии и эксергетический КПД компрессора	ОПК-2, ПК-2

8	Тема 8. Циклы двигателей внутреннег о сгорания (ДВС) и газотурбин ных установок (ГТУ)	2	Принцип действия поршневых ДВС. Циклы с изохорным и изобарным подводом теплоты. Цикл со смешанным подводом теплоты. Изображение циклов в Pv- и TS-диаграммах.	Термодинамические и эксергетические КПД циклов ДВС. Сравнительный анализ термодинамических циклов ДВС	ОПК-2, ПК-2
9	Тема 9. Циклы паросиловы х установок.	1	Принципиальная схема паросиловой установки. Цикл Ренкина и его исследование. Влияние начальных и конечных параметров на термический КПД цикла Ренкина. Изображение цикла в PV, TS и HS диаграммах.	Пути повышения экономичности паросиловых установок. Теплофикационный цикл. Понятие о циклах атомных силовых установок. Эксергетический анализ циклов паросиловых установок.	ОПК-2, ПК-2
1 0	Тема 10. Циклы холодильны х установок.	3	Классификация холодильных установок. Рабочие тела.	Холодильный коэффициент и холодопроизводительность. Цикл воздушной холодильной установки. Циклы паровых компрессорных холодильных установок. Понятие об абсорбционных и пароэжекторных холодильных установках. Получение сжиженных газов. Общие принципы и способы достижения сверхнизких температур	ОПК-2, ПК-2

6. Содержание семинарских, практических занятий (лабораторного практикума) – не предусмотрено учебным планом

7. Содержание лабораторных занятий (если предусмотрено учебным планом)

Учебным планом предусмотрено проведение лабораторных занятий по дисциплине «Техническая термодинамика и теплотехника» для студентов очной формы обучения в объеме 36 часов.

Цель проведения лабораторных занятий – усвоение лекционного материала, а также выработка студентами умений, связанных с обработкой экспериментальных данных.

№	Раздел	Час	Наименова	Краткое содержание	Формируем
п/п	дисциплины	ы	ние		ые
			лабораторн		компетенци
			ой работы		И
1	Тема 2.		Измерение	Теплоемкость газов Массовая,	
	Первый закон		теплоемкост	объемная и молярная	
	термодинамик		и воздуха	теплоемкости (средняя и	
	И.			истинная, изобарная и	ОПК-2,
		10		изохорная). Зависимость	ОПК-3
				теплоемкости от температуры.	om s
				Формулы для расчета теплового	
				потока по средним	
				теплоемкостям.	
2	T		Исследовани	Процессы парообразования в	
	Тема 5.		е процессов	PV и TS координатах. Водяной	ПК-2
	Реальные	8	с влажным	пар Параметры кипящей	ОПК-2,
	газы.		воздухом	жидкости, сухого насыщенного	ОПК-3
				пара, влажного насыщенного	
				пара и перегретого пара.	
3			Исследовани	Свойства реальных газов Опыт	
			e <i>PV</i> -	Эндрюса и уравнение состояния	
		8	диаграммы	реальных газов. Способы	ОПК-2,
			углекислого	определения коэффициента	ПК-2
			газа (опыт	сжимаемости.	
			Эндрюса)		
4			Исследовани	Уравнение Клапейрона-	
		10	е кривой	Клаузиуса. Анализ процессов в	ОПК-2,
		10	насыщения	реальных газах с помощью	ПК-2
			водяного	таблицы ТСВП	
			пара		

Лабораторные занятия проводятся в помещениях учебных и научных лабораторий кафедры «Техническая термодинамика и теплотехника» с использованием лабораторных и исследовательских экспериментальных установок и стендов.

8. Самостоятельная работа бакалавра

	в. Симостоятельния ривоти викиливри										
№ п/п	Темы, выносимые на самостоятельную работу	Часы	Форма СРС	Формируемые компетенции							
1	Изучение теоретического (лекционного) материала в течение семестра	12	Проработка теоретического материала	ОПК-2, ОПК-3							
2	Подготовка к лабораторным работам оформление отчетов	10	Проработка теоретического материала, расчет лабораторных работ	ОПК-2, ОПК-3 ПК-2							
3	Выполнение расчетной работы на тему: «Расчет цикла тепловых двигателей с газообразным рабочим телом»	16	Выполнение расчетно- графического задания, оформление отчета	ОПК-2, ПК-2							
4	Выполнение расчетной работы	16	Выполнение расчетно-	ОПК-2,							

на тему: «Расчет цикла тепловых	графического	задания,	ПК-2
двигателей с парообразным	оформление отч	ета	
рабочим телом»			

9. Использование рейтинговой системы оценки знаний.

При оценке результатов деятельности студентов в рамках дисциплины «Техническая термодинамика и теплотехника» используется рейтинговая система. Рейтинговая оценка формируется на основании текущего и промежуточного контроля. Максимальное и минимальное количество баллов по различным видам учебной работы описано в положении о рейтинговой системе.

Максимальное количество баллов по дисциплине составляет 100 баллов.

Промежуточной аттестацией по дисциплине является зачет, поэтому минимальный текущий рейтинг – 60, максимальный - 100 баллов.

Оценочные средства	Кол-во	Минимально баллов	Максимально баллов
Лабораторная работа	4	32	52
Расчетно-графическая работа	2	16	26
Тест	1	3	5
Контрольные задачи	1	9	17
ИТОГО		60	100

10. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

Оценочные средства для проведения текущего контроля успеваемости, промежуточной аттестации обучающихся и итоговой (государственной итоговой) аттестации разрабатываются согласно положению о Фондах оценочных средств, рассматриваются как составная часть рабочей программы и оформляются отдельным документом.

11. Информационно-методическое обеспечение дисциплины «Техническая термодинамика и теплотехника»

11.1 Основная литература

При изучении дисциплины «Техническая термодинамика и теплотехника» в качестве основных источников информации рекомендуется использовать следующую литературу.

Основные источники информации	Кол-во экз.
1. Амирханов Д.Г. Техническая термодинамика:	130 экз. в УНИЦ КНИТУ
учеб. пособие / Казанский нац. исслед. технол. ун-	
т; Д.Г. Амирханов, Р.Д. Амирханов, М.С.	
Курбангалеев, А.А. Мухамадиев, И.Х. Хайруллин	
.— Казань : КНИТУ, 2017 .— 320 с.	
2. Шилова С.В. Химическая термодинамика	Электронная библиотека УНИЦ
[Электронный ресурс] : метод. руководство к	КНИТУ
практ. занятиям / Казан. гос. технол. ун-т ; С.В.	http://ft.kstu.ru/ft/978-5-7882-XXX-
Шилова [и др.] .— Казань : КНИТУ, 2009 .— 116 с.	Shilova_himicheskaya-termodinamika.pdf
: табл.	Доступ с ІР адресов КНИТУ

3. Амирханов Д.Г. Техническая термодинамика	Электронная библиотека УНИЦ
[Электронный ресурс] : учеб. пособие / Казанский	КНИТУ
нац. исслед. технол. ун-т; Д.Г. Амирханов, Р.Д.	http://ft.kstu.ru/ft/Amirchanov-
Амирханов .— Казань : КНИТУ, 2014 .— 264 с. :	tekhnicheskaya.pdf
ил.	Доступ с ІР адресов КНИТУ

11.2 Дополнительная литература

В качестве дополнительных источников информации рекомендуется использовать следующую литературу:

еледующую эттературу.	
Дополнительные источники информации	Кол-во экз.
1. Курбангалеев М.С. Техническая термодинамика	Электронная библиотека УНИЦ
[Электронный ресурс] : методические указания к	КНИТУ
лабораторным работам / М.С. Курбангалеев, А.А.	http://ft.kstu.ru/ft/Kurbangaleev-
Мухамадиев, И.Х. Хайруллин; Казан. нац. исслед.	tekhnicheskaya_termodinamika_MU.pdf
технол. ун-т .— Казань : Изд-во КНИТУ, 2014 .—	Доступ с IP адресов КНИТУ
60 с. : ил.	
2. Нарышкин Д. Г. Химическая термодинамика с	ЭБС «znanium.com»
Mathcad. Расчетные задачи: Учебное пособие.— 1	http://znanium.com/go.php?id=503896
.— Москва ; Москва : Издательский Центр РИОР :	Доступ из любой точки интернета
ООО "Научно-издательский центр ИНФРА-М",	после регистрации с ІР-адресов КНИТУ
2016 .— 199 c.	
3. Гинзбург В.Л. Сборник задач по общему курсу	ЭБС «Консультант студента»
физики. Книга II. Термодинамика и молекулярная	
физика / Гинзбург В.Л. ; Левин Л.М. ; Сивухин	http://www.studentlibrary.ru/book/ISBN5
Д.В.; Яковлев И.А. — Moscow: Физматлит, 2006	922106031.html
.— Сборник задач по общему курсу физики. Книга	Доступ из любой точки интернета
II. Термодинамика и молекулярная физика	после регистрации с ІР-адресов КНИТУ
[Электронный ресурс] / Гинзбург В.Л., Левин Л.М.,	
Сивухин Д. В., Яковлев И.А.; Под ред. Д. В.	
Сивухина 5-е изд., стер М.: ФИЗМАТЛИТ,	
2006.	

11.3 Электронные источники информации

При изучении дисциплины «Техническая термодинамика и теплотехника» в качестве электронных источников информации, рекомендуется использовать следующие источники:

- 1. Электронный каталог УНИЦ КНИТУ Режим доступа: http://ruslan.kstu.ru/
- 2. Электронная библиотека УНИЦ КНИТУ Режим доступа: http://ft.kstu.ru/ft/
- 3. ЭБС «Консультант студента» Режим доступа: http://www.studentlibrary.ru
- 4. ЭБС «znanium.com» Режим доступа: www.znanium.com

Согласовано:

Зав. сектором ОКУФ

«казанский париональный исследователь устройнувский унивесность. Увебовоборов вый информационный центр

12. Материально-техническое обеспечение дисциплины (модуля).

На кафедре теоретических основ теплотехники в учебном процессе при выполнении лабораторных работ и практических занятий используется современная вычислительная техника. Компьютерный класс укомплектован необходимым количеством персональных компьютеров РС АТ и программным обеспечением. В качестве материально-технического обеспечения дисциплины используются мультимедийные средства; наборы слайдов и кинофильмов; демонстрационные приборы; при необходимости – средства мониторинга и т.д.

1. Лекционные занятия:

а. комплект электронных презентаций, слайдов, видеофильмов

2. Лабораторные работы:

- а. лаборатория A-23 оснащена лабораторным оборудованием для проведения работ: исследование процессов с влажным воздухом, измерение теплоемкости воздуха, исследование PV диаграммы углекислого газа (опыт Эндрюса), исследование кривой насыщения водяного пара.
- b. лаборатория A-35 (Компьютерный класс) оснащена 8 компьютерами,
- с. шаблоны расчетов и отчетов по лабораторным работам представлены в электронном виде,
- d. результаты расчетов оформляются на принтере.

13. Образовательные технологии

Удельный вес занятий, проводимых на лабораторных занятиях в интерактивной форме, обучения составляет 12 часов. Лекционные занятия проводятся при помощи проектора в виде презентаций и слайдов.