Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Казанский национальный исследовательский технологический университет» (ФГБОУ ВО «КНИТУ»)

УТВЕРЖДАЮ Проректор по УР

А.В. Бурмистров 2017 г.

РАБОЧАЯ ПРОГРАММА

По дисциплине	Б1.В.ОД.11	Электрофизические	методы	обработки	пищевых
продуктов					
Направление подг	отовки 19.03.0	02 «Продукты питания	я из расти	тельного сь	прья»
		ия бродильных произв			
Квалификация: Б	акалавр				
Форма обучения	380	яная			
Институт Пищевь	х производств	и биотехнологии			
Факультет Пище	вой инженерии	1			
Кафедра-разработ	чик рабочей п	рограммы Оборудова	ния пище	вых произво	одств
Курс, семестр 5 1	сурс, 9 семест	P			

	Часы	Зачетные единицы
Лекции	4	0,11
Практические занятия		
Семинарские занятия		
Лабораторные занятия	8	0,22
Самостоятельная работа	123	3,42
Форма аттестации	Контрольная работа Экзамен (9)	0,25
Всего	144	4,0

Рабочая программа составлена с учетом требований Федерально государственного образовательного стандарта высшего образования № 211 12.03.2015) по направлению 19.03.02 «Продукты питания из растительного сыры по профилю «Технология бродильных производств и виноделие», на основан учебного плана для набора обучающихся 2015, 2016, 2017 годов.

Примерная программа по дисциплине отсутствует.

Разработчик программы:

Профессор

(должность)

<u>Минкин В.С.</u> (Ф.И.О)

Рабочая программа рассмотрена и одобрена на заседании кафедры протокол 11 октября 2017 г. № 10

Зав. кафедрой

17

А.Н.Николаев

(подпись)

(Ф.И.О.)

УТВЕРЖДЕНО

Протокол заседания методической комиссии факультета или института, которому относится кафедра-разработчик РП

от 7 ноября 2017 г. № 11

Председатель комиссии

(подпись)

Герасимов М.К.

(Ф.И.О)

Начальник УМЦ

(поличен)

Китаева Л.А.

(Ф.И.О)

1. Цели освоения дисциплины

Целями освоения дисциплины «Электрофизические методы обработки пищевых продуктов» являются:

- а) приобретение знаний в области электрофизических методов обработки пищевых продуктов;
- б) формирование необходимых умений и навыков принятия конкретного технического решения при разработке новых технологических процессов производства продуктов питания.

Место дисциплины в структуре ООП ВПО

Дисциплина «Электрофизические методы обработки пищевых продуктов» относится к обязательным дисциплинам вариативной части программы и формирует у бакалавров по направлению подготовки 19.03.02 «Продукты питания из растительного сырья» набор специальных знаний и компетенций, необходимых для выполнения производственно-технологической, экспериментально-исследовательской и расчетно-проектной профессиональной деятельности.

Для успешного освоения дисциплины «Электрофизические методы обработки пищевых продуктов» бакалавр по направлению подготовки 19.03.02 «Продукты питания из растительного сырья» должен освоить материал предшествующих дисциплин:

- а) Б1.Б.5 Математика;
- б) Б1.Б.7 Физика;
- в) Б1.Б.8.1 Неорганическая химия;
- г) Б1.Б.8.2 Органическая химия

Дисциплина «Электрофизические методы обработки пищевых продуктов» является предшествующей и необходима для успешного усвоения последующих дисциплин:

- а) Б1.В.ОД.10 Физико-механические свойства сырья и готовой продукции;
- б) Б1.В.ДВ.6.1 Методы физического и математического моделирования пищевых производств;
 - в) Б1.В.ДВ.9.1 Тара и упаковка пищевых продуктов;
 - г) Б1.В.ДВ.12.1 Основы технологии консервирования;
 - д) Б1.В.ДВ.12.2 Основы технологии молока.

Знания, полученные при изучении дисциплины «Электрофизические методы обработки пищевых продуктов» могут быть использованы при прохождении производственной и преддипломной практик, выполнении выпускной квалификационной работы по направлению подготовки 19.03.02 «Продукты питания из растительного сырья».

3. Компетенции обучающегося, формируемые в результате освоения дисциплины

1. ОК-5: способность к самоорганизации и самообразованию;

2. ПК-1: способность определять и анализировать свойства сырья и полуфабрикатов, влияющие на оптимизацию технологического процесса и качество готовой продукции, ресурсосбережение, эффективность и надежность процессов производства.

В результате освоения дисциплины обучающийся должен:

- 1) Знать:
- а) современные способы самоорганизации и самообразования;
- б) биохимические, биофизические и теплофизические основы воздействия энергетических полей на продукты питания;
- в) характеристики и принципы действия основных приборов и устройств для получения энергетических воздействий;
- в) способы применения полей в конкретных процессах;
- 2) Уметь:
- а) рассчитывать теплофизические параметры режимов обработки;
- б) определять и анализировать свойства сырья и полуфабрикатов, влияющие на оптимизацию технологического процесса и качество готовой продукции, ресурсосбережение, эффективность и надежность процессов производства;
- 3) Владеть:
- а) основными методами воздействия на пищевые продукты электрическими, магнитными и др. полями;
- б) основами теории электрофизических полей.

4. Структура и содержание дисциплины «Электрофизические методы обработки пищевых продуктов» Общая трудоемкость дисциплины составляет 4,0 зачетных единицы, 144 часа.

№ п/п	Раздел дисциплины		Виды учебной работы (в Информационные часах) другие		Информационные и другие	Оценочные средства для		
	A	Семестр	Лекции	Практи- ческие занятия	Лабораторн ые работы	CPC	образовательные технологии, используемые при осуществлении образовательного процесса	проведения промежуточн ой аттестации по разделам
1.	Классификация физических методов обработки пищевых продуктов	9	1		2	30	Информационные лекции, проблемные лекции, интерактивные технологии, информационно-коммуникационные образовательные технологии, проведение электронных презентаций рефератов, использование медиаресурсов, энциклопедий, электронных библиотек и Интернет.	Отчеты по лабораторным работам.
2.	Воздействие электрического тока.	9	1		2	30	Информационные лекции, проблемные лекции, интерактивные	Контрольная работа, отчеты по

							технологии, информационно- коммуника-ционные образовательные технологии, использование медиаресурсов, энциклопедий, электронных библиотек и Интернет.	лабораторным работам.
3.	Обработка пищевых продуктов инфракрасным излучением	9	1		2	31	Информационные лекции, проблемные лекции, интерактивные технологии, информационно-коммуникационные образовательные технологии, использование медиаресурсов, энциклопедий, электронных библиотек и Интернет.	Отчеты по лабораторным работам.
4.	Обработка электрическими и магнитными полями	9	1		2	32	Информационные лекции, проблемные лекции, интерактивные технологии, информационно-коммуникационные образовательные технологии, использование медиаресурсов, энциклопедий, электронных библиотек и Интернет.	Отчеты по лабораторным работам.
			4		8	123		
Форм	Форма аттестации							Контрольная работа, экзамен

5. Содержание лекционных занятий по темам с указанием используемых инновационных образовательных технологий.

	Раздел		Тема лекции	Краткое содержание	Формир
№	дисциплины	Часы			уемые
					компете
					нции
	Классификац		1.1. Введение	Применение электрофизических полей	ОК-5
1.	ИЯ	1	в курс.	в технологии пищевых продуктов.	ПК-1
	физических		1.2.Основа	Виды энергетических полей.	
	методов		электрофизич	Классификация физических методов	
	обработки		еских	обработки пищевых продуктов.	
	пищевых		методов. Их	Энергия химических связей.	
	продуктов.		преимуществ	Частотный диапазон излучения и его	
			a.	воздействие на различные пищевые	
				продукты и процессы переработки ПП.	
				Различные виды воздействующего	
				фактора: электростатическое поле,	
				электродиализ, электрофорез,	

	T		Г		
				электрофлотация, электроимпульс.	
				Технологические процессы, в которых	
				используются данная обработка.	
	Воздействие		2.1	Воздействие на пищевые продукты	ОК-5
2.	электрическо	1	Воздействие	токов различной частоты (50 Γ ц -10^{10}	ПК-1
	го тока.		токов	Гц). Их промышленное использование	
			различной	для коагуляции сырья, сушки,	
			частоты.	пастеризации, стерилизации, сушки,	
			2.2. Промыш-	термической обработки.	
			ленное		
			применение.		
	Обработка		3.1. Инфра-	Действие инфракрасного (ИК)	ОК-5
3.	пищевых	1	красное (ИК)	излучения на пищевые продукты (10 ¹¹	ПК-1
	продуктов		излучение на	-10^{14} Гц). Использование ИК-	
	инфракрас-		пищевые	излучения в мясной, рыбной, овощной,	
	ным излуче-		продукты.	кондитерской промышленности. Три	
	нием		3.2 Действие	группы ИК-излучения и их действие	
			ультрафиолет	на пищевые продукты. Коэффициент	
			ОВОГО	пропускания и поглощения.	
			излучения	Поглощение энергии пищевыми	
				продуктами. Зоны поглощения	
	Обработка		6.1 Обработ-	Обработка пищевых продуктов	ОК-5
4.	электрически	1	ка электри-	переменным электрическим полем.	ПК-1
	ми и		ческим	Действие поля СВЧ. Воздействие	
	магнитными		полем.	постоянного и переменного магнитных	
	полями.		6.2 Схема	полей на пищевые продукты.	
			СВЧ –	Импульсная обработка ПП.	
			аппарата.		

6. Содержание практических занятий.

В рамках дисциплины «Электрофизические методы обработки пищевых продуктов» практических занятий не предусмотрено.

7. Содержание лабораторных занятий.

Цель проведения лабораторных работ - освоение лекционного материала, касающегося изучения производства пива и безалкогольных напитков, а также выработка студентами определенных умений, связанных с исследованием закономерностей изменения физико-химических свойств сырья и процессов пивоварения и производства безалкогольных напитков, и навыков, связанных с применением основных методов анализа для определения технологических характеристик сырья, полупродуктов и готовой продукции.

Nº	Раз дел дис цип лин ы	Часы	Наименование лабораторной работы	Краткое содержание	Формиру емые компетен ции
1.	1	2		Изучение законов поглощения пищевыми продуктами в оптическом диапазоне. Расчет коэффициента пропускания и оптической плотности.	ПК-1
2.	1	2	, ,	Изучение действия ИК-излучения на отдельные характеристики пищевых продуктов.	

3.	1	2	Тема 3. Законы теплового излучения и поглощения излучения продуктами. продуктами постоянной	и поглощения пищевыми I	ОК-5 ПК-1
4.	1	2		ние и молекулярную I гь жидких и твердых	ОК-5 ПК-1

Лабораторные работы проводятся в помещении учебных лабораториях кафедры ОПП (В-205, В-123) с использованием следующего оборудования: технических и аналитических весов, сушильного шкафа, суховоздушного термостата, водяной бани, рефрактометра, рНметра, стеклянной химической посуды и необходимых реактивов, спектрофотометра ПЭ=5300В, набора сит, газоанализатора диоксида углерода ИГМ-014-3-22, Измерителей температуры ИТ-17К, микроскопа, 12 персональных компьютеров и программного обеспечения, в том числе пакетов прикладных программ MathCad, Mathematica.

8. Самостоятельная работа бакалавра

о. Самостоятельная равота вакалавра — — — — — — — — — — — — — — — — — — —						
№ п/п	Темы, выносимые на самостоятельную работу	Часы	Форма СРС	Форми руемые компет енции		
1	Тема 1. Виды физических методов обработки пищевых продуктов	30	Изучение лекционного материала и рекомендуемой литературы. Выполнение домашнего задания. Типовой продуктовый расчет.	ОК-5 ПК-1		
2.	Тема 2. Воздействие электрического тока.	30	Изучение рекомендуемой литературы. Подготовка к лабораторной работе и оформление отчета. Типовой расчет.	ОК-5 ПК-1		
3.	Тема 4. Источники инфракрасного излучения.	31	Изучение лекционного материала и рекомендуемой литературы. Подготовка к лабораторной работе и оформление отчета.	ОК-5 ПК-1		
4.	Тема 6. Обработка электрическими и магнитными полями.	32	Изучение лекционного материала и рекомендуемой литературы. Тепловой расчет.	ОК-5 ПК-1		

9. Использование рейтинговой системы оценки знаний.

В рамках дисциплины «Электрофизические методы обработки пищевых продуктов» используется балльно-рейтинговая система. Применение рейтинговой системы осуществляется согласно «Положению о балльно-рейтинговой системе оценки знаний студентов в КНИТУ», в рамках специально разработанного формата.

Изучение дисциплины «Электрофизические методы обработки пищевых продуктов» завершается экзаменом.

Максимальный рейтинг студента по дисциплине R равен 100 баллам и определяется в общем случае по формуле:

$$R=R^{\text{Tek}}+R^{3\kappa3}$$

где $R^{\text{тек}}$ - балл за текущую работу студента в течение семестра (выполнение лабораторных работ, контрольных работ и реферата).

Текущий рейтинг $R^{\text{тек}}$ (баллы, полученные за работу в семестре в ходе лабораторных работ, контрольных и реферата). Его максимальное значение равно 60 баллам, минимальное значение 36 баллов (при выполнении всех контрольных точек). Если текущий рейтинг менее 36 баллов, то студент к экзамену не допускается.

При изучении дисциплины предусматривается выполнение 4 лабораторных работ. Выполнение каждой по результатам защиты отчетов оценивается в 5 баллов (всего 4 х 15 = 60 баллов). За контрольную работу максимальный бал равен 60. За экзамен студент может получить максимальное количество баллов — 40. В итоге максимальный рейтинг за изучение дисциплины составляет 100 баллов.

За эти контрольные точки студент может получить минимальное и максимальное количество баллов.

Оценочные средства	Кол-во	Min, баллов	Мах, баллов
Контрольная работа	1	36	60
Лабораторная работа	4	24	40
Экзамен		24	40
Итого:		60	100

10. Учебно-методическое и информационное обеспечение дисциплины 10.1 Основная литература

При изучении дисциплины «Электрофизические методы обработки пищевых продуктов» в качестве основных источников информации, рекомендуется

использовать следующую литературу:

№ п/п	Основные источники информации	Кол-во экз.
1.	Машины и аппараты пищевых производств. В 2 книгах / Под ред. В.А. Панфилова. Кн.1. – М.: Высшая школа, 2001703 с.	164 экз. в УНИЦ КНИТУ
2.	Машины и аппараты пищевых производств. В 2 книгах / Под ред. В.А. Панфилова. Кн.2. – М.: Высшая школа, 20011384 с.	159 экз. в УНИЦ КНИТУ

10.2 Дополнительная литература

В качестве дополнительных источников информации, рекомендуется

использовать следующую литературу:

	льзовать следующую литературу.			
№	Дополнительные источники информации	Кол-во экз.		
	Расчет и конструирование машин и аппаратов	145 экз. в УНИЦ		
.1.	пищевых производств / Под ред. А.Н. Острикова.	КНИТУ		
	– СПб.: ГИОРД, 2003. – 350 c.			
	, ,			
	Аль-Сабри, Ф.М. Теоретические и	ЭБС «Лань»:		
2.	экспериментальные исследования процесса	https://e.lanbook.com		
	гидрофобизации сырья в СВЧ обработке	/book/1487.		
	[Электронный ресурс] / Ф.М. Аль-Сабри, О.М.	Доступ с любой		
	Гридин. — Электрон. дан. — Москва : Горная	точки Интернет		
	книга, 2010. — 25 c.	после регисрации с		
		ІР-адресов КНИТУ		
	Кущ, Г.Г. Приборы и устройства	ЭБС «Лань»:		
3.	оптического и СВЧ диапазонов [Электронный	https://e.lanbook.com		
	ресурс] : учеб. пособие / Г.Г. Кущ, Ж.М.	/book/4953.		
	Соколова, Л.И. Шангина. — Электрон. дан. —	Доступ с любой		
	Москва: ТУСУР, 2012. — 414 c.	точки Интернет		
		после регисрации с		
		ІР-адресов КНИТУ		

10.3 Электронные источники информации

При изучении дисциплины «Электрофизические методы обработки пищевых продуктов» в качестве электронных источников информации, рекомендуется использовать следующие источники:

- 1. Научная Электронная Библиотека (НЭБ) Режим доступа: http://elibrary.ru
- 2. ЭБС «Юрайт» Режим доступа: http://www.biblio-online.ru

- 3. ЭБС «РУКОНТ» Режим доступа: http://rucont.ru
- 4. ЭБС «IPRbooks» Режим доступа: http://www.iprbookshop.ru
- 5. ЭБС «Лань» Режим доступа: http://e.lanbook.com/books/
- 6. ЭБС «КнигаФонд» Режим доступа:www.knigafund.ru
- 7. ЭБС «БиблиоТех» Режим доступа: https://kstu.bibliotech.ru
- 8. Поисковые системы: http://<u>www.foodprom.ru</u> сайт изд-ва «Пищевая промышленность»
- 9. http://www.sciencemag.org. сайт мультидисциплинарного журнала «Science».

Согласовано:

Зав. сектором ОКУФ

.

огдаральных гостратственное видиктное образовательное учеткления высшего образовательное обра

11. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

Оценочные средства для проведения текущего контроля успеваемости, промежуточной аттестации обучающихся и итоговой (государственной итоговой) аттестации разрабатываются согласно положению о Фондах оценочных средств, рассматриваются как составная часть рабочей программы и оформляются отдельным документом.

12. Материально-техническое обеспечение дисциплины (модуля).

В качестве материально-технического обеспечения дисциплины «Электрофизические методы обработки пищевых продуктов» используются:

1. Лекционные занятия

Комплект слайдов с оборудованием

- 2. Лабораторные работы
- лаборатория В-203: рефрактометр, спектрофотометр, кулонометр, сахариметр;
- компьютерный класс В-205, оснащенный мультимедийным оборудованием;
- рабочее место преподавателя, оснащенное компьютером с доступом в Интернет;
- рабочие места студентов, оснащенные компьютерами с доступом в Интернет, предназначенные для работы в электронной образовательной среде.

13. Образовательные технологии

Из общего количества аудиторных занятий в объеме 12 ч в интерактивной форме проводится 2 ч. Удельный объем занятий в интерактивной форме составляет 16,7%.

Основные виды образовательных технологий

- 1. Информационные технологии обучение в электронной образовательной среде с целью расширения доступа к образовательным ресурсам (теоретически к неограниченному объему и скорости доступа), увеличения контактного взаимодействия с преподавателем, построения индивидуальных траекторий подготовки и объективного контроля и мониторинга знаний студентов.
- 2. Работа в команде совместная деятельность студентов в группе под руководством лидера, направленная на решение общей задачи путем творческого сложения результатов индивидуальной работы членов команды с делением полномочий и ответственности.
- 3. Проблемное обучение стимулирование студентов к самостоятельному приобретению знаний, необходимых для решения конкретной проблемы.
- 4. Контекстное обучение мотивация студентов к усвоению знаний путем выявления связей между конкретным знанием и его применением. При этом знания, умения, навыки даются не как предмет для запоминания, а в качестве средства решения профессиональных задач.
- 5. Обучение на основе опыта активизация познавательной деятельности студента за счет ассоциации и собственного опыта с предметом изучения.
- 6. Междисциплинарное обучение использование знаний из разных областей, их группировка и концентрация в контексте решаемой задачи.

Лист переутверждения рабочей программы

	пересмотрена		на _ОПП	заседании		кафедры
	(наименование кафедры)					
№ п/п	Дата переутверждения РП (протокол заседания кафедры № от 20)	Наличие изменений	Наличие изменений в списке литературы	Подпись разработ- чика РП	Подпись заведующего кафедрой	Подпись начальника УМЦ
	протокол №7 заседания кафедры от 3 июля 2018	нет	Нет	Jus	A	Marry