Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Казанский национальный исследовательский технологический университет» (ФГБОУ ВО «КНИТУ»)

УТВЕРЖДАЮ

РАБОЧАЯ ПРОГРАММА

По дисциплине Б1.Б.22 Термодинамика

Направление подготовки 15.03.02 «Технологические машины и оборудование» (шифр) (наименование)
Профиль подготовки «Пищевая инженерия малых предприятий» БАКАЛАВР
Форма обучения ЗАОЧНАЯ
Институт, факультет ИППБТ, ФПИ
Кафедра-разработчик рабочей программы ТОТ
Курс, семестр курс - 2, 3, семестр - 4, 5

		Часы				
	4 сем.	5 сем.		единицы		
Лекции	2	4	6	0,17		
Практические занятия		4	4	0,11		
Семинарские занятия						
Лабораторные занятия		2	2	0,06		
Самостоятельная работа	7	85	92	2,55		
Форма аттестации		Зачет 4	4	0,11		
Всего			108	3		

Рабочая программа составлена с учетом требований Федерального государственного образовательного стандарта высшего образования № 1170 от 20.10.2015 по направлению 15.03.02 «Технологические машины и оборудование» для профиля «Пищевая инженерия малых предприятий», на основании учебного плана для набора обучающихся 2016, 2017, 2018г.

Типовая программа по дисциплине отсутствует.

Разработчик программы:

Доцент каф. ТОТ

lan О.А. Лонщаков

Рабочая программа рассмотрена и одобрена на заседании кафедры ТОТ, протокол от 28.08.2018 г. № 1.

Зав. кафедрой, профессор

*Э*М. Гумеров

СОГЛАСОВАНО

Протокол заседания методической комиссии ФПИ, реализующего подготовку образовательной программы от 04.09.2018 № 1

Председатель комиссии, профессор

М.А. Поливанов

УТВЕРЖДЕНО

Протокол заседания методической комиссии механического факультета

от *1*7 . *09*..2018 г. № <u></u>\$_.

Председатель комиссии, доцент

А.В. Гаврилов

Начальник УМЦ, доцент

Л.А. Китаева

1. Цели освоения дисциплины

Целями освоения дисциплины «Термодинамика» являются:

- а) формирование знаний о методах преобразования и использования теплоты, а также принципы действия и конструктивные особенности тепловых и холодильных машин, теплои парогенераторов.
- б) подготовка специалистов, владеющих навыками грамотной эксплуатации современного теплового оборудования при максимальной экономии топлива и материалов, интенсификация и оптимизация современных энерготехнологических процессов
- в) на базе термодинамики с привлечением аппарата некоторых других фундаментальных дисциплин осуществляется расчет и проектирование всех тепловых двигателей паровых и газовых турбин, реактивных и ракетных двигателей внутреннего сгорания, а также всевозможного технологического оборудования, как-то: холодильных машин, сушильных, сжижительных, энерготехнологических и других установок.

2. Место дисциплины в структуре образовательной программы

Дисциплина «Термодинамика» относится к дисциплинам *базовой* части ООП и формирует у бакалавров по направлению подготовки 15.03.02 «Технологические машины и оборудование» набор знаний, умений, навыков и компетенций.

Для успешного освоения дисциплины «Термодинамика» *бакалавр* по направлению подготовки 15.03.02 «Технологические машины и оборудование» должен освоить материал предшествующих дисциплин:

- а) Математика
- б) Физика

Дисциплина «Термодинамика» является предшествующей и необходима для успешного усвоения последующих дисциплин:

- а) Процессы и аппараты пищевых производств;
- б) Механика жидкости и газа.

Знания, полученные при изучении дисциплины «Термодинамика» могут быть использованы при выполнении выпускных квалификационных работ по направлению подготовки 15.03.02 «Технологические машины и оборудование».

- 3. Компетенции обучающегося, формируемые в результате освоения дисциплины
 - 1. (ПК-2) умение моделировать технические объекты и технологические процессы с использованием стандартных пакетов и средств автоматизированного проектиро-

- вания, готовностью проводить эксперименты по заданным методикам с обработкой и анализом результатов;
- 2. (ПК-3) способность принимать участие в работах по составлению научных отчетов по выполненному заданию и внедрять результаты исследований и разработок в области технологических машинах и оборудования.

В результате освоения дисциплины обучающийся должен:

- 1) Знать: а) закономерности основных термодинамических процессов с идеальным и реальным газами;
 - б) схемы и циклы тепловых машин и холодильных установок, их КПД
- в) принципы оптимизации энерготехнологических схем: принцип «многоступенчатости». Принципы, связанные с входом и выходом энергоносителей. Принципы регенерации и интеграции.
- 2) Уметь: а) определять термодинамические параметры и теплофизические свойства различных газов, водяного пара, хладоагентов и других веществ;
 - б) пользоваться первым и вторым законами термодинамики;
 - в) пользоваться справочной литературой, диаграммами.
- 3) Владеть: а) термодинамическими методами повышения эффективности использования подводимой энергии.

4. Структура и содержание дисциплины «Термодинамика»

Общая трудоемкость дисциплины составляет 3 зачетные единицы, 108 часов.

№ п/п	Раздел дисципли- ны	Семестр]	Виды уче (в ч	Оценочные средства для проведения промежу-точной аттестации по разделам		
			Лек- ция	Семинар (Практи- ческое занятие)	Лаборатор- ные работы	CPC	
1	Тема 1. Основные понятия и определения	5	0,6	0,4		5	Тестовые за- дания
2	термодинамики. Тема 2. Первый закон термодинамики.	5	0,7	0,4	1	2 5	Защита лабораторных работ, тестирование

3	Тема 3 Основные термодинамиче- ские процессы с идеальным газом.	4 5	0,7	0,4	-	3 5	Тестовые за- дания
4	Тема 4. Второй закон	5	0,5	0,4	-	10	Тестовые за- дания
5	термодинамики. Тема 5. Реальные газы.	5	0,5	0,4	1	10	Защита лабораторных работ, тестирование
6	Тема 6. Термодинамика потока. Истечение и дросселирование газов и паров.	5	0,6	0,4	-	10	Тестовые за- дания
7	Тема 7. Термодинамически й анализ процессов в компрессорах	5	0,6	0,4	-	10	Тестовые за- дания
8	Тема 8. Циклы двигателей внут- реннего сгорания (ДВС) и газотур- бинных установок (ГТУ)	5	0,6	0,4	-	10	Тестовые задания, контрольная работа
9	Тема 9. Циклы паросиловых установок.	5	0,6	0,4	-	10	Тестовые задания, контрольная работа
10	Тема 10. Циклы холодильных уста- новок.	5	0,6	0,4	-	10	Тестовые за- дания
	ИТОГО		6	4	2	92	Зачет (4 ч)

5. Содержание лекционных занятий по темам с указанием формируемых компетенций и используемых инновационных образовательных технологий.

№ п / п	Раздел дис- циплины	Ча сы	Тема лекционного занятия	Краткое содержание	Формируемые компетенции
1	Тема 1. Основные понятия и определени я термодинам ики.	0,6	Термодинамическая система. Основные параметры состояния. Равновесное и неравновесное состояние.	Уравнение состояния идеального газа. Термодинамические процессы: равновесные и неравновесные, обратимые и необратимые. Изображение термодинамических процессов в ру-диаграмме	ПК-2
2	Тема 2. Первый за- кон термо- динамики.	0,7	Первый закон термодинамики. Теплота и работа как формы передачи энергии. Понятие о внутренней энергии и энтальпии.	Сущность первого закона термодинамики, формулировки и аналитические выражения. Работа проталкивания. Техническая и располагаемая работа. Теплоемкость газов Массовая, объемная и молярная теплоемкости (средняя и истинная, изобарная и изохорная). Зависимость теплоемкости от температуры. Формулы для расчета теплового потока по средним теплоемкостям. Смеси рабочих тел. Способы задания состава смеси, соотношения между массовыми и объемными долями. Вычисление параметров состояния смеси, определение кажущейся молекулярной массы и газовой постоянной смеси, определение парциальных давлений компонентов.	ПК-3
3	Тема 3 Основные термодинамические процессы с идеальным газом.	0,7	Изохорный, изобарный, изотермический и адиабатный процессы их анализ.	Изохорный, изобарный, изотермический и адиабатный процессы их анализ. Изображение в координатах Рv и ТS. Политропные процессы. Основные характеристики политропных процессов. Обобщающее значение политропного процесса.	ПК-2
4	Тема 4. Второй закон термодинам ики.	Сущность второго 0,6 закона термодинамики. Основные формулировки второго закона		Прямые и обратные циклы. Термодинамические КПД и холодильный коэффициент. Циклы Карно и их свойства. Аналитическое выражение второго закона термодинамики. (первый и второй интегралы Клаузиуса) Изменение	ПК-2, ПК-3

			термопинамики	энтропии в обратимих и необратимих	
			термодинамики. Термодинамические циклы тепловых машин.	энтропии в обратимых и необратимых процессах. Принцип возрастания энтропии изолированной системы Философское и статистическое толкования второго закона термодинамики. Формула Больцмана Понятие об эксергии, эксергетический баланс и эксергетический к.п.д	
5	Тема 5.Реальные газы.	0,6	Свойства реальных газов Опыт Эндрюса и уравнение состояния реальных газов. Способы определения коэффициента сжимаемости.	Процессы парообразования в PV и TS координатах. Водяной пар Параметры кипящей жидкости, сухого насыщенного пара, влажного насыщенного пара и перегретого пара. Уравнение Клапейрона-Клаузиуса. Анализ процессов в реальных газах с помощью таблицы ТСВП и диаграмм hs и lqp-h	ПК-2
6	Тема б. Термодина мика потока. Истечение и дросселиро вание газов и паров.	0,5	Уравнение первого закона термодинамики для потока. Понятие о сопловом и диффузорном течении газа. Скорость газа и его массовый расход при адиабатном течении. Связы критической скорости истечения с местной скоростыю распространения звука. Критическое отношение давлений.	Условие перехода через критическую скорость. Сопло Ловаля. Расчет процессов истечения реального газа с помощью <i>hs</i> -диаграммы. Действительный процесс истечения. Параметры заторможенного потока. Дросселирование газов и паров. Сущность процесса дросселирования и его уравнение. Изменение параметров в процессе дросселирования. Понятие об эффекте Джоуля - Томпсона. Особенности дросселирования идеального и реального газов. Понятие о температуре инверсии. Практическое использование процесса дросселирования. Условное изображение процесса дросселирования в hS- и TS-диаграммах	ПК-2 ПК-3
7	Тема 7. Термоди- намический анализ про- цессов в компрессо- рах	0,5	Классификация компрессоров и принцип действия. Изотермическое, адиабатное и политропное сжатия.	Полная работа, затраченная на привод компрессора. Влияние объема вредного пространства на работу компрессоров. Многоступенчатое сжатие. Изображение в Ру- и ТS- диаграммах термодинамических процессов, протекающих в компрессорах. Относительный внутренний КПД компрессора. Расчет потерь энергии и эксергетический КПД компрессора	ПК-2 ПК-3
8	Тема 8. Циклы двигателей внутреннег о сгорания	0,6	Принцип действия поршневых ДВС. Циклы с изохорным и изобарным подводом теплоты. Цикл со смешанным под-	Термодинамические и эксергетические КПД циклов ДВС. Сравнительный анализ термодинамических циклов ДВС	ПК-2

	(ДВС) и газотурбин ных установок (ГТУ)		водом теплоты. Изображение циклов в Pv- и TS- диаграммах.		
9	Тема 9. Циклы паросиловы х установок.	0,6	Принципиальная схема паросиловой установки. Цикл Ренкина и его исследование. Влияние начальных и конечных параметров на термический КПД цикла Ренкина. Изображение цикла в PV, TS и HS диаграммах.	Пути повышения экономичности паросиловых установок. Теплофикационный цикл. Понятие о циклах атомных силовых установок. Эксергетический анализ циклов паросиловых установок.	ПК-2
1 0	Тема 10. Циклы хо- лодильных установок.	0,6	Классификация хо- лодильных устано- вок. Рабочие тела.	Холодильный коэффициент и холодопроизводительность. Цикл воздушной холодильной установки. Циклы паровых компрессорных холодильных установок. Понятие об абсорбционных и пароэжекторных холодильных установках. Получение сжиженных газов. Общие принципы и способы достижения сверхнизких температур	ПК-3

6. Содержание семинарских, практических занятий (лабораторного практикума) На практических занятиях в объеме 4 часа студенты выполняют тестовые задания для проведения текущего контроля знаний по всем разделам дисциплины(темы 1- тема 10) компетенций ПК-2, ПК-3.

№ п/п	Раздел дисциплины	Ча сы	Тема практического занятия	Форми- руемые компе- тенции
1	Тема 1. Основные понятия и определения термодинамики.	0,4	Термодинамическая система. Основные параметры состояния. Равновесное и неравновесное состояние.	ПК-2
Тема 2. Первый закон тер- модинамики.		0,4	Первый закон термодинамики. Теплота и работа как формы передачи энергии. Понятие о внутренней энергии и энтальпии.	ПК-3

3	Тема 3 Основные термодинамические процессы с идеальным газом.	0,4	Изохорный, изобарный, изотермический и адиабатный процессы их анализ.	ПК-2
4	Тема 4. Второй закон термодинамики.	0,4	Сущность второго закона термодинамики. Термодинамичинамические циклы тепловых машин.	ПК-2, ПК-3
5	Тема 5.Реальные газы.		Свойства реальных газов. Опыт Эндрюса и уравнение состояния реальных газов. Способы определения коэффициента сжимаемости.	ПК-2
6	Тема 6. Термодинамика потока. Истечение и дросселирование газов и паров.	0,4	Уравнение первого закона термодинамики для потока. Связь критической скорости истечения с местной скоростью распространения звука. Критическое отношение давлений.	ПК-2 ПК-3
7	Тема 7. Термодинамиче- ский анализ процессов в компрессорах	0,4	Классификация компрессоров и принцип действия. Изотермическое, адиабатное и политропное сжатия.	ПК-2 ПК-3
8	Тема 8. Циклы двигателей внутреннего сгорания (ДВС) и газотурбинных установок (ГТУ)		Циклы с изохорным и изобарным подводом теплоты. Цикл со сме- шанным подводом теплоты. Изо- бражение циклов в Pv- и TS- диа- граммах.	ПК-2
9	Тема 9. Циклы паросиловых уста-новок.	0,4	Цикл Ренкина и его исследование. Влияние начальных и конечных параметров на термический КПД цикла Ренкина. Изображение цикла в PV, TS и HS диаграммах.	ПК-2
10	Тема 10. Циклы холодиль- ных установок.	0,4	Классификация холодильных установок. Рабочие тела.	ПК-3

7. Содержание лабораторных занятий (если предусмотрено учебным планом)

Учебным планом предусмотрено проведение лабораторных занятий по дисциплине «Термодинамика» для студентов заочной формы обучения в объеме 2 часов.

Цель проведения лабораторных занятий — усвоение лекционного материала, а также выработка студентами умений, связанных с обработкой экспериментальных данных. Студенты выполняют одну из предлагаемых работ.

№	Раздел дисци-	ч _{а-}	Наимено-	Краткое содержание	Формируе-
п/п	плины	сы	вание лабо-		мые компе-
			раторной работы		тенции
1			Исследова-	Процессы парообразования в	ПК-2,
	Тема 5.		ние процес-	PV и TS координатах. Водяной	ПК-3
	Реальные		сов с влаж-	пар Параметры кипящей жид-	
	газы.		ным возду-	кости, сухого насыщенного па-	
			хом	ра, влажного насыщенного па-	
				ра и перегретого пара.	
2	Тема 2. Пер-		Измерение	Теплоемкость газов Массовая,	ПК-2,
	вый закон		теплоемко-	объемная и молярная теплоем-	ПК-3
	термодинами-		сти воздуха	кости (средняя и истинная, изо-	
	ки.			барная и изохорная). Зависи-	
		2		мость теплоемкости от темпе-	
		2		ратуры. Формулы для расчета	
				теплового потока по средним	
	T. 7 D		11	теплоемкостям.	пи о
3	Тема 5. Реаль-		Исследова- ние <i>PV</i> -	Свойства реальных газов Опыт	ПК-2,
	ные газы.			Эндрюса и уравнение состояния реальных газов. Способы	ПК-3
			диаграммы углекислого	определения коэффициента	
			газа (опыт	сжимаемости.	
			Эндрюса)	CATIVICENIOCITI.	
4			Исследова-	Уравнение Клапейрона-	ПК-2,
	Тема 5.		ние кривой	Клаузиуса. Анализ процессов в	ПК-3
	Реальные		насыщения	реальных газах с помощью таб-	
	газы.		водяного	лицы ТСВП	
			пара		

Лабораторные занятия проводятся в помещениях учебных и научных лабораторий кафедры «Теоретические основы теплотехники» с использованием лабораторных и исследовательских экспериментальных установок и стендов.

8. Самостоятельная работа бакалавра.

№	Темы, выносимые на само-	Часы	Форма СРС	Формируемые
п/п	стоятельную работу			компетенции
1	Изучение теоретического (лек-	60	Проработка теоретического	ПК-2,
	ционного) материала в течение		материала	ПК-3
	семестра			
2	Подготовка к защите лабора-	10	Проработка теоретического	ПК-2,
	торных работ, оформление отче-		материала, расчет лабора-	ПК-3

	тов		торных работ	
3	Выполнение контрольной работы	22	Выполнение расчетнографического задания,	ПК-2, ПК-3
			оформление отчета	

9. Использование рейтинговой системы оценки знаний.

При оценке результатов деятельности студентов в рамках дисциплины «Термодинамика» используется рейтинговая система. Рейтинговая оценка формируется на основании текущего и промежуточного контроля. Максимальное и минимальное количество баллов по различным видам учебной работы описано в положении о балльно-рейтинговой системе.

При изучении дисциплины «Термодинамика» предусматривается выполнение трех контрольных точек: решение 1 контрольной работы, 1 тест, 1 лабораторная работа (по выбору преподавателя).

Промежуточной аттестацией по дисциплине является зачет, поэтому минимальный текущий рейтинг -60, максимальный -100 баллов.

Оценочные средства	Кол-во	Минимально баллов	Максимально баллов
Лабораторная работа	1	16	26
Контрольная работа	1	14	18
Тест	1	30	56
ИТОГО		60	100

10. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

Оценочные средства для проведения текущего контроля успеваемости, промежуточной аттестации обучающихся и итоговой (государственной итоговой) аттестации разрабатываются согласно положению о Фондах оценочных средств, рассматриваются как составная часть рабочей программы и оформляются отдельным документом.

11. Информационно-методическое обеспечение дисциплины «Термодинамика»

11.1 Основная литература

При изучении дисциплины **«Термодинамика»** в качестве основных источников информации рекомендуется использовать следующую литературу.

Основные источники информации	Кол-во экз.
1. Нащокин В.В. Техническая термодинамика и	987 экз. в УНИЦ КНИТУ
теплопередача [Учебники] : учеб. пособие для не-	
энергет. спец. вузов / В.В. Нащокин .— 4-е изд.,	
стереотип. — М.: Аз-book, 2008 .— 470 с. : ил.,	
табл.	
2. Амирханов Д.Г. Техническая термодинамика	Электронная библиотека
[Электронный ресурс] : учеб. пособие / Казанский	УНИЦ КНИТУ
нац. исслед. технол. ун-т; Д.Г. Амирханов, Р.Д.	http://ft.kstu.ru/ft/Amirchanov-
Амирханов .— Казань : КНИТУ, 2014 .— 264 с. :	tekhnicheskaya.pdf
ил.	Доступ с ІР адресов КНИТУ

11.2 Дополнительная литература

В качестве дополнительных источников информации рекомендуется использовать следующую литературу:

Дополнительные источники информации	Кол-во экз.
1. Курбангалеев М.С. Техническая термодинамика	Электронная библиотека
[Электронный ресурс] : методические указания к	УНИЦ КНИТУ
лабораторным работам / М.С. Курбангалеев, А.А.	http://ft.kstu.ru/ft/Kurbangaleev-
Мухамадиев, И.Х. Хайруллин; Казан. нац. исслед.	tekhnicheskaya termodinamika MU.pdf
технол. ун-т .— Казань : Изд-во КНИТУ, 2015 .—	Доступ с IP адресов КНИТУ
60 с. : ил.	
2. Нарышкин Д. Г. Химическая термодинамика с	ЭБС «znanium.com»
Mathcad. Расчетные задачи: Учебное пособие.— 1	http://znanium.com/go.php?id=503896
.— Москва; Москва: Издательский Центр РИОР:	Доступ из любой точки интернета по-
ООО "Научно-издательский центр ИНФРА-М",	сле регистрации с ІР-адресов КНИТУ
2016 .— 199 c.	
3. Шилова С.В. Химическая термодинамика [Элек-	Электронная библиотека
тронный ресурс] : метод. руководство к практ. за-	УНИЦ КНИТУ
нятиям / Казан. гос. технол. ун-т; С.В. Шилова [и	http://ft.kstu.ru/ft/978-5-7882-XXX-
др.] .— Казань : КНИТУ, 2009 .— 116 с. : табл.	Shilova_himicheskaya-termodinamika.pdf
	Доступ с ІР адресов КНИТУ
4. Гинзбург В.Л. Сборник задач по общему курсу	ЭБС «Консультант студента»
физики. Книга II. Термодинамика и молекулярная	
физика / Гинзбург В.Л.; Левин Л.М.; Сивухин	http://www.studentlibrary.ru/book/ISBN5
Д.В. ; Яковлев И.А. — Moscow : Физматлит, 2006	<u>922106031.html</u>
.— Сборник задач по общему курсу физики. Книга	Доступ из любой точки интернета по-
II. Термодинамика и молекулярная физика [Элек-	сле регистрации с ІР-адресов КНИТУ
тронный ресурс] / Гинзбург В.Л., Левин Л.М., Си-	
вухин Д. В., Яковлев И.А.; Под ред. Д. В. Сивухи-	
на 5-е изд., стер М.: ФИЗМАТЛИТ, 2006.	

11.3 Электронные источники информации

При изучении дисциплины «Термодинамика» в качестве электронных источников информации, рекомендуется использовать следующие источники:

- 1. Электронный каталог УНИЦ КНИТУ Режим доступа: http://ruslan.kstu.ru/
- 2. Электронная библиотека УНИЦ КНИТУ Режим доступа: http://ft.kstu.ru/ft/
- 3. ЭБС «Консультант студента» Режим доступа: http://www.studentlibrary.ru
- 4. ЭБС «znanium.com» Режим доступа: www.znanium.com

Согласовано:

Зав. сектором ОКУФ

12. Материально-техническое обеспечение дисциплины (модуля).

На кафедре теоретических основ теплотехники в учебном процессе при выполнении лабораторных работ и практических занятий используется современная вычислительная техника. Компьютерный класс укомплектован необходимым количеством персональных компьютеров и программным обеспечением. В качестве материально-технического обеспечения дисциплины используются мультимедийные средства; наборы слайдов и кинофильмов; демонстрационные приборы; при необходимости – средства мониторинга и т.д.

1. Лекционные занятия:

• комплект электронных презентаций, слайдов, видеофильмов

2. Лабораторные работы:

- лаборатория A-23 оснащена лабораторным оборудованием для проведения работ: исследование процессов с влажным воздухом, измерение теплоемкости воздуха, исследование *PV* диаграммы углекислого газа (опыт Эндрюса), исследование кривой насыщения водяного пара.
- лаборатория А-35 (компьютерный класс) оснащена 8 компьютерами,
- шаблоны расчетов и отчетов по лабораторным работам представлены в электронном виде,
- результаты расчетов оформляются на принтере.

13. Образовательные технологии

Интерактивная форма обучения по дисциплине предусмотрена в количестве 4 ч. Лекционные занятия могут проводиться при помощи проектора в виде презентаций и слайдов.

При защите лабораторных работ интерактивной формой может являться дискуссия.