Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Казанский национальный исследовательский технологический университет» (ФГБОУ ВО «КНИТУ»)

УТВЕРЖДАЮ
Проректор по УР
А.В. Бурмистров
« У » 2018 г.

РАБОЧАЯ ПРОГРАММА

По дисциплине Б1.Б.19 Техническая термодинамика

Специальность: 18.05.01 «Химическая технология энергонасыщенных материалов и изделий»

Специализация: для	всех специализаций			
Квалификация (степен	ь) выпускника	инженер		
Форма обучения	очная			
Институт, факультет	имеф ,итхи	дитеф,		
Кафедра-разработчик	рабочей программы _	ř	ТОТ	
Курс, семестр	2 курс, 4 семестр			

	Часы	Зачетные единицы
Лекции	18	0,5
Практические занятия	_	-
Семинарские занятия	-	-
Лабораторные занятия	27	0,75
Самостоятельная работа	63	1,75
Форма аттестации	зачет	
Всего	144	3

Казань, 2018 г.

Рабочая программа составлена с учетом требований Федерального государственного образовательного стандарта высшего образования № 1176 от 12.09.2016 года, по специальности 18.05.01 «Химическая технология энергонасыщенных материалов и изделий» для набора обучающихся 2017, 2018 г.

Разработчик программы:

профессор каф. ТОТ (должность)

(иодпись)

<u>Р.Н. Максудов</u> (Ф.И.О)

Зав. кафедрой, проф.

Эринись)

Ф.М. <u>Гумеров</u> (Ф.И.О.)

СОГЛАСОВАНО

Протокол заседания методической комиссии ИХТИ от $12.09\ 2018$ г. № 8

Председатель комиссии, профессор

(подпись)

В.Я. Базотов

УТВЕРЖДЕНО

Протокол заседания методической комиссии МФ

от 17.09.2018 г. № 8

Председатель комиссии, доцент

(подпись)

А.В. Гаврилов

Начальник УМЦ, доцент

(подпись)

Л.А. Китаева

1. Цели освоения дисциплины

Целями освоения дисциплины «Техническая термодинамика» являются:

- а) формирование знаний о методах преобразования и использования теплоты и работы, а также о принципах действия и конструктивные особенности тепловых и холодильных машин, тепло- и парогенераторов;
- б) подготовка специалистов, владеющих навыками энргоэффективной эксплуатации современного энергоиспользующего оборудования, способами интенсификации и оптимизаци современных энерготехнологических процессов;
- в) на базе термодинамики с привлечением аппарата других фундаментальных дисциплин осуществляется расчет и проектирование тепловых двигателей паровых и газовых турбин, иного технологического оборудования: холодильных машин, сушильных, энерготехнологических и других установок.

2. Место дисциплины в структуре образовательной программы

Дисциплина <u>«Техническая термодинамика»</u> относится к *дисциплинам базовой* части ООП и формирует у обучающихся по специальности 18.05.01 «Химическая технология энергонасыщенных материалов и изделий» набор знаний, умений, навыков и компетенций.

Для успешного освоения дисциплины <u>«Техническая термодинамика»</u> обучающийся по специальности 18.05.01 «Химическая технология энергонасыщенных материалов и изделий» должен освоить материал предшествующих дисциплин:

- а) Высшая математика;
- б) Физика;

Дисциплина <u>«Техническая термодинамика»</u> является предшествующей и необходима для успешного усвоения последующих дисциплин:

- а) Процессы и аппараты химической технологии;
- б) Системы управления химико-технологическими процессами.

Знания, полученные при изучении дисциплины <u>«Техническая термодинамика» могут</u> быть использованы при прохождении практик и выполнении выпускных квалификационных работ по специальности 18.05.01 «Химическая технология энергонасыщенных материалов и изделий».

3. Компетенции обучающегося, формируемые в результате освоения дисциплины

- 1. (ОК-1) способность к абстрактному мышлению, анализу, синтезу;
- 2. (ОПК-1) способность использовать математические, естественнонаучные и инженерные знания для решения задач своей профессиональной деятельности.

В результате освоения дисциплины обучающийся должен:

- 1) Знать: а) закономерности основных термодинамических процессов с идеальным и реальным газами;
 - б) схемы и циклы тепловых машин и холодильных установок, их КПД;
- в) принципы оптимизации энерготехнологических схем: принцип «многоступенчатости». Принципы, связанные с входом и выходом энергоносителей. Принципы регенерации и интеграции.
- 2) Уметь: а) определять термодинамические параметры и теплофизические свойства различных газов, водяного пара, хладагентов и других веществ;
 - б) пользоваться первым и вторым законами термодинамики;
 - в) пользоваться справочной литературой, диаграммами.
- 3) Владеть: а) термодинамическими методами повышения эффективности использования подводимой энергии.

4. Структура и содержание дисциплины «Термодинамика»

Общая трудоемкость дисциплины составляет 4 зачетные единицы, 144 часа.

№ п/п	Раздел дисциплины	Семестр	В Лекц ия	(в ч Семинар (Практи- ческое	ной работы асах) Лабораторн ые работы		Оценочные средства для проведения промежуточн ой аттестации по разделам
1	Тема 1. Основные понятия и определения термодинамики.	4	1	занятие)	-	2	Тестирование
2	Тема 2. Первый закон термодинамики.	4	1,5	-	8	8	Защита лабораторных работ, тестирование.
3	Тема 3 Основные термодинамическ ие процессы с идеальным газом.	4	1,5	-	-	8	Тестирование, выполнение и защита расчетно-графической работы.
4	Тема 4. Второй закон термодинамики.	4	2	-	-	2	Тестирование.
5	Тема 5. Реальные			-	19		Защита

	Τ	1	_			10	
	газы.	4	2			12	лабораторных
							работ,
							тестирование.
							Выполнение и
							защита
							расчетно-
							графической
							работы.
	Тема 6.						Тестирование
	Термодинамика						
6	потока. Истечение						
0	и дросселирование						
	газов и паров.	4	2	_	-	2	
	•						
	Тема 7.			-	-		Тестирование
	Термодинамически	4	2			5	
7	й анализ процессов						
	в компрессорах						
	Тема 8. Циклы						Тестирование,
	двигателей						защита
	внутреннего	4	2	_	_	12	расчетно-
8	сгорания (ДВС) и						графической
	газотурбинных						работы
	установок (ГТУ)						r
	Тема 9. Циклы			_	_		Тестирование,
	паросиловых	4	1				защита
9	установок.						расчетно-
	J						графической
							работы
	Тема 10. Циклы			-	-		
10	холодильных	4	3				Тестирование
	установок.						по темам 1-10
	Тема 11. Расчет						Выполнение и
	цикла тепловых						защита
11	двигателей с	4	_	_	_	12	расчетно-
	парообразным						графической
	рабочим телом						работы
	paoo mii raioni						Зачет
	ИТОГО		18	_	27	63	Ja iciii
	MIUIU]	10	_	41	UJ	

5. Содержание лекционных занятий по темам с указанием формируемых компетенций.

№ п / п	Раздел дисциплин ы	Ча сы	Тема лекционного занятия	Краткое содержание	Формируе мые компетен ции
1	Тема 1. Основные понятия и определени я термодинам ики.	1	Термодинамическая система. Основные параметры состояния. Равновесное и неравновесное состояние.	Уравнение состояния идеального газа. Термодинамические процессы: равновесные и неравновесные, обратимые и необратимые. Изображение термодинамических процессов в Ру-диаграмме	ОК-1 ОПК-1
2	Тема 2. Первый закон термодинам ики.	1,5	Первый закон термодинамики. Теплота и работа как формы передачи энергии. Понятие о внутренней энергии и энтальпии.	Сущность первого закона термодинамики, формулировки и аналитические выражения. Техническая и располагаемая работа. Теплоемкость газов. Удельные теплоемкости (средняя и истинная, изобарная и изохорная). Зависимость теплоемкости от температуры. Формулы для расчета теплового потока по средним теплоемкостям. Смеси рабочих тел. Способы задания состава смеси. Вычисление параметров состояния смеси, определение кажущейся молекулярной массы и газовой постоянной смеси, определение парциальных давлений компонентов.	ОК-1 ОПК-1
3	Тема 3 Основные термодинам ические процессы с идеальным газом.	1,5	Изохорный, изобарный, изотермический и адиабатный процессы их анализ.	Изохорный, изобарный, изотермический и адиабатный процессы их анализ. Изображение в координатах Рv и ТS. Политропные процессы. Основные характеристики политропных процессов. Обобщающее значение политропного процесса.	ОК-1 ОПК-1
4	Тема 4. Второй закон термодинам ики.	2	Сущность второго закона термодинамики. Основные формулировки второго закона	Прямые и обратные циклы. Термодинамический КПД и холодильный коэффициент. Цикл Карно и их свойства. Аналитическое выражение второго закона термодинамики. Изменение	ОК-1 ОПК-1

					1
			термодинамики. Термодинамические циклы тепловых машин.	энтропии в обратимых и необратимых процессах. Принцип возрастания энтропии изолированной системы. Статистическое толкования второго закона термодинамики. Уравнение Больцмана. Понятие об эксергии, эксергетический баланс и эксергетический к.п.д	
5	Тема 5. Реальные газы.	2	Свойства реальных газов. Опыт Эндрюса и уравнение состояния реальных газов. Способы определения коэффициента сжимаемости.	Процессы парообразования в Pv и Ts диаграммах. Водяной пар Параметры кипящей жидкости, сухого насыщенного пара, влажного насыщенного пара и перегретого пара. Уравнение Клапейрона-Клаузиуса. Анализ процессов в реальных газах с помощью термодинамических таблицы и диаграмм.	ОК-1 ОПК-1
6	Тема 6. Термодина мика потока. Истечение и дросселиро вание газов и паров.	2	Уравнение первого закона термодинамики для потока. Понятие о сопловом и диффузорном течении газа. Скорость газа и его массовый расход при адиабатном течении. Дросселирование.	Расчет процессов истечения реального газа с помощью hs-диаграммы. Дросселирование газов и паров. Сущность процесса дросселирования и его уравнение. Изменение параметров в процессе дросселирования. Понятие об эффекте Джоуля - Томпсона. Особенности дросселирования идеального и реального газов. Понятие о температуре инверсии. Практическое использование процесса дросселирования. Условное изображение процесса дросселирования в hs- и Тs-диаграммах.	ОК-1 ОПК-1
7	Тема 7. Термодина мический анализ процессов в компрессо- рах	2	Классификация компрессоров и принцип действия. Циклы с изотермическим, адиабатным и политропным сжатием.	Полная работа, затраченная на привод компрессора. Влияние объема вредного пространства на работу компрессоров. Многоступенчатое сжатие. Изображение в Рv- и Тs- диаграммах термодинамических процессов, протекающих в компрессорах. Относительный внутренний КПД компрессора.	ОК-1 ОПК-1
8	Тема 8. Циклы двигателей внутренне-	2	Принцип действия ДВС. Циклы с изохорным и изобарным подводом теплоты.	Термодинамические и эксергетические КПД циклов ДВС. Сравнительный анализ термодинамических циклов ДВС.	ОК-1 ОПК-1

	го сгорания (ДВС) и газотурбинных установок (ГТУ)		Цикл со смешанным подводом теплоты. Изображение циклов в Pv- и Ts- диаграммах.		
9	Тема 9. Циклы паросило- вых установок.	1	Принципиальная схема паросиловой установки. Цикл Ренкина.	Пути повышения экономичности паросиловых установок. Теплофикационный цикл. Влияние начальных и конечных параметров на термический КПД цикла Ренкина. Изображение цикла в Рv, Тs и hs диаграммах.	ОК-1 ОПК-1
1 0	Тема 10. Циклы холодиль- ных установок.	3	Классификация холодильных установок. Рабочие тела.	Холодильный коэффициент и холодопроизводительность. Цикл воздушной холодильной установки. Циклы паровых компрессорных холодильных установок. Понятие об абсорбционных и пароэжекторных холодильных установках. Общие принципы и способы достижения сверхнизких температур	

6. Содержание семинарских, практических занятий (лабораторного практикума) – не предусмотрено учебным планом

7. Содержание лабораторных занятий (если предусмотрено учебным планом)

Учебным планом предусмотрено проведение лабораторных занятий по дисциплине «**Техническая термодинамика**» для студентов очной формы обучения в объеме 27 часов.

Цель проведения лабораторных занятий — усвоение лекционного материала, а также выработка студентами умений, связанных с обработкой экспериментальных данных.

№	Раздел	Ча	Наименован	Краткое содержание	Формируем
π/	дисциплины	сы	ие		ые
П			лабораторно		компетенци
			й работы		И
1	Тема 2. Первый закон термодинамики.	8	Измерение теплоемкости воздуха	Теплоемкость газов. Удельные теплоемкости (средняя и истинная, изобарная и изохорная). Зависимость теплоемкости от температуры. Формулы для расчета теплового потока по средним теплоемкостям.	ОПК-1
2	Тема 5. Реальные газы.	6	Исследование процессов с влажным воздухом	Процессы парообразования в Pv и Ts координатах. Водяной пар. Параметры кипящей жидкости, сухого насыщенного пара, влажного насыщенного	ОПК-1

				пара и перегретого пара.	
1	Тема 5.	6	Исследование	Свойства реальных газов. Опыт	ОПК-1
	Реальные газы.		Pv -	Эндрюса и уравнение	
			диаграммы	состояния реальных газов.	
			углекислого	Способы определения	
			газа (опыт	коэффициента сжимаемости.	
			Эндрюса).		
2		7	Исследование	Уравнение Клапейрона-	ОПК-1
	Тема 5.		кривой	Клаузиуса. Расчет теплоты	
	Реальные газы.		насыщения	парообразования по	
			водяного пара	экспериментальным данным.	

Лабораторные занятия проводятся в помещениях учебных и научных лабораторий кафедры «Теоретические основы теплотехники» с использованием лабораторных и исследовательских экспериментальных установок и стендов.

8. Самостоятельная работа бакалавра/магистранта/аспиранта

No	Темы, выносимые на	Чa	Форма СРС	Формируемые
п/п	самостоятельную работу	сы	•	компетенции
1	Изучение теоретического	15	Проработка теоретического	ОК-1
	(лекционного) материала в течение семестра		материала	ОПК-1
2	Подготовка к лабораторным работам оформление отчетов	12	Проработка теоретического материала, обработка и	ОК-1 ОПК-1
	рисстии оформистие от тегев		оформление лабораторных работ	
3	Выполнение расчетной работы на тему: «Расчет цикла тепловых двигателей с газообразным рабочим телом»	16	Выполнение расчетно- графического задания, оформление отчета	ОК-1 ОПК-1
4	Подготовка к лабораторным работам оформление отчетов	12	Обработка и оформление лабораторных работ	ОК-1 ОПК-1
5	Выполнение расчетной работы на тему: «Расчет цикла тепловых двигателей с парообразным рабочим телом»	8	Выполнение расчетно- графического задания, оформление отчета	ОК-1 ОПК-1

9. Использование рейтинговой системы оценки знаний.

При оценке результатов деятельности студентов в рамках дисциплины «Техническая термодинамика » используется рейтинговая система. Рейтинговая оценка формируется на основании текущего и промежуточного контроля. Максимальное и минимальное количество баллов по различным видам учебной работы описано в положении о балльно-рейтинговой системе.

Максимальное количество баллов по дисциплине составляет 100 баллов.

Промежуточной аттестацией по дисциплине является зачет, поэтому минимальный текущий рейтинг – 60, максимальный - 100 баллов.

Оценочные средства	Кол-во	Min, баллов	Мах, баллов
Лабораторная работа	4	36	48
Тестирование	1	6	28
Расчетно-графическая работа	2	18	24

Итого:		60	100
--------	--	----	-----

10. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

Оценочные средства для проведения текущего контроля успеваемости, промежуточной аттестации обучающихся и итоговой (государственной итоговой) аттестации разрабатываются согласно положению о Фондах оценочных средств, рассматриваются как составная часть рабочей программы и оформляются отдельным документом.

11. Информационно-методическое обеспечение дисциплины «Техническая Термодинамика»

11.1 Основная литература

При изучении дисциплины «**Техническая термодинамика**» в качестве основных источников информации рекомендуется использовать следующую литературу.

Основные источники информации	Кол-во экз.
1. Нащокин В.В. Техническая термодинамика и	988 экз. в УНИЦ КНИТУ
теплопередача [Учебники]: учеб. пособие для	
неэнергет. спец. вузов / В.В. Нащокин .— 4-е изд.,	
стереотип. — М.: Аз-book, 2008 — 470 с.: ил.,	
табл.	
2. Шилова С.В. Химическая термодинамика	Электронная библиотека УНИЦ
[Электронный ресурс]: метод. руководство к	КНИТУ
практ. занятиям / Казан. гос. технол. ун-т; С.В.	http://ft.kstu.ru/ft/978-5-7882-XXX-
Шилова [и др.].— Казань: КНИТУ, 2009 .— 116 с.:	Shilova_himicheskaya-termodinamika.pdf
табл.	Доступ с ІР адресов КНИТУ
3. Амирханов Д.Г. Техническая термодинамика	Электронная библиотека УНИЦ
[Электронный ресурс]: учеб. пособие / Казанский	КНИТУ http://ft.kstu.ru/ft/Amirchanov-
нац. исслед. технол. ун-т; Д.Г. Амирханов, Р.Д.	tekhnicheskaya.pdf
Амирханов — Казань: КНИТУ, 2014 .— 264 с.: ил.	Доступ с ІР адресов КНИТУ

11.2 Дополнительная литература

В качестве дополнительных источников информации рекомендуется использовать следующую литературу:

следующую литературу:	
Дополнительные источники информации	Кол-во экз.
1. Курбангалеев М.С. Техническая термодинамика	Электронная библиотека УНИЦ
[Электронный ресурс]: методические указания к	КНИТУ
лабораторным работам / М.С. Курбангалеев, А.А.	http://ft.kstu.ru/ft/Kurbangaleev-
Мухамадиев, И.Х. Хайруллин; Казан. нац. исслед.	tekhnicheskaya_termodinamika_MU.pdf
технол. ун-т — Казань: Изд-во КНИТУ, 2014 — 60	Доступ с ІР адресов КНИТУ
с.: ил.	
2. Нарышкин Д. Г. Химическая термодинамика с	ЭБС «znanium.com»
Mathcad. Расчетные задачи: Учебное пособие — 1	http://znanium.com/go.php?id=503896
— Москва; Москва: Издательский Центр РИОР:	Доступ из любой точки интернета
ООО "Научно-издательский центр ИНФРА-М",	после регистрации с ІР-адресов
2016 — 199 c.	КНИТУ
3. Гинзбург В.Л. Сборник задач по общему курсу	ЭБС «Консультант студента»
физики. Книга II. Термодинамика и молекулярная	
физика / Гинзбург В.Л.; Левин Л.М.; Сивухин Д.В.;	http://www.studentlibrary.ru/book/ISBN5
Яковлев И.А. — Moscow: Физматлит, 2006 .—	<u>922106031.html</u>
Сборник задач по общему курсу физики. Книга II.	Доступ из любой точки интернета
Термодинамика и молекулярная физика	после регистрации с ІР-адресов
[Электронный ресурс] / Гинзбург В.Л., Левин	КНИТУ
Л.М., Сивухин Д. В., Яковлев И.А.; Под ред. Д. В.	
Сивухина - 5-е изд., М.: ФИЗМАТЛИТ, 2006.	

11.3 Электронные источники информации

При изучении дисциплины «Термодинамика» в качестве электронных источников информации, рекомендуется использовать следующие источники:

- 1. Электронный каталог УНИЦ КНИТУ Режим доступа: http://ruslan.kstu.ru/
- 2. Электронная библиотека УНИЦ КНИТУ Режим доступа: http://ft.kstu.ru/ft/
- 3. ЭБС «Консультант студента» Режим доступа: http://www.studentlibrary.ru
- 4. ЭБС «znanium.com» Режим доступа: www.znanium.com

Согласовано:

Зав. сектором ОКУФ

12. Материально-техническое обеспечение дисциплины (модуля).

На кафедре теоретических основ теплотехники в учебном процессе при выполнении лабораторных работ и практических занятий используется современная вычислительная техника. Компьютерный класс укомплектован необходимым количеством персональных компьютеров РС АТ и программным обеспечением. В качестве материально-технического обеспечения дисциплины используются мультимедийные средства; наборы слайдов и кинофильмов; демонстрационные приборы; при необходимости — средства мониторинга и т.д.

1. Лекционные занятия:

а. комплект электронных презентаций, слайдов, видеофильмов

2. Лабораторные работы:

- а. лаборатория A-23 оснащена лабораторным оборудованием для проведения работ: исследование процессов с влажным воздухом, измерение теплоемкости воздуха, исследование PV диаграммы углекислого газа (опыт Эндрюса), исследование кривой насыщения водяного пара.
- b. лаборатория A-35 (Компьютерный класс) оснащена 8 компьютерами,
- с. шаблоны расчетов и отчетов по лабораторным работам представлены в электронном виде,
- d. результаты расчетов оформляются на принтере.

13. Образовательные технологии

Удельный вес занятий, проводимых в интерактивной форме обучения, составляет от 9 до 11 часов, в зависимости от специальности. Лекционные занятия проводятся при помощи проектора в виде презентаций и слайдов.