Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Казанский национальный исследовательский технологический университет»

(ФГБОУ ВО «КНИТУ»)

УТВЕРЖДАЮ

Проректор по УР

Бурмистров А.В.

«<u>/</u>»

20/9г.

РАБОЧАЯ ПРОГРАММА

По дисциплине «Имитационное моделирование»

Направление подготовки - 01.03.02 «Прикладная математика и информатика»

Профиль/специализация - Прикладная математика и информатика

Квалификация выпускника - бакалавр

Форма обучения - очная

Институт, факультет - Нефти, химии и нанотехнологий, Наноматериалов и нанотехнологий

Кафедра-разработчик рабочей программы - Интеллектуальных систем и управления информационными ресурсами Курс 4, семестр 7

	Часы	Зачетные единицы
Лекции	18	0,5
Практические занятия		,
Лабораторные занятия	36	1
Контроль самостоятельной работы		
Самостоятельная работа	126	3,5
Форма аттестации экзамен	36	1
Всего	216	6

Рабочая программа составлена с учетом требований Федерального государственного образовательного стандарта высшего образования (№9 от 10.01.2018) по направлению 01.03.02 «Прикладная математика и информатика» на основании учебного плана набора обучающихся 2019 г.

Разработчик программы:

Доцент

de

А.С. Титовцев

Рабочая программа рассмотрена и одобрена на заседании кафедры ИСУИР, протокол от 1.07.2019 г. № 11

Зав. кафедрой

1

А.П. Кирпичников

УТВЕРЖДЕНО

Начальник УМЦ, доцент

Л.А. Китаева

1. Цели освоения дисциплины

Целями освоения дисциплины «Имитационное моделирование» являются

- а) формирование знаний о различных системах моделирования,
- б) обучение различным методам и алгоритмам построения моделей сложных систем.
- в) обучение способам решения проблемы очередей и задержки обслуживания в различного рода системах,
- г) раскрытие сущности процессов, происходящих в системах массового обслуживания (СМО)

2. Место дисциплины (модуля) в структуре основной образовательной программы

Дисциплина «Имитационное моделирование» к части ООП обязательной и формирует у бакалавров по направлению подготовки 01.03.02 набор знаний, умений, навыков и компетенций.

Для успешного освоения дисциплины «Имитационное моделирование» бакалавр по направлению подготовки 01.03.02 должен освоить материал предшествующих дисциплин должен освоить материал предшествующих дисциплин:

- а) информатика и программирование,
- б) теория вероятности и математическая статистика.

Дисциплина «Имитационное моделирование» является одной из заключительных дисциплин.

Знания, полученные при изучении дисциплины «Имитационное моделирование», могут быть использованы при прохождении преддипломной практики и выполнении выпускной квалификационной работы, а также для выполнения научно-исследовательского, проектно-конструкторского и организационно-управленческого видов деятельности по направлению подготовки 01.03.02.

3. Компетенции и индикаторы достижения компетенции обучающегося, формируемые в результате освоения дисциплины

- ОПК-1 Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности
- ОПК-1.1 Обладает базовыми знаниями, полученными в области математических и (или) естественных наук.
- ОПК-1.2 Умеет использовать фундаментальные знания, полученные в области математических и (или) естественных наук, в профессиональной деятельности
- ОПК-1.3 Имеет навыки выбора методов решения задач в профессиональной деятельности на основе теоретических знаний
- ОПК-2 Способен использовать и адаптировать существующие математические методы и системы программирования для разработки и реализации алгоритмов решения прикладных задач
- ОПК-2.1 Знает базовые математические методы и системы программирования для разработки и реализации алгоритмов решения

прикладных задач

ОПК-2.2 - Умеет использовать и адаптировать существующие базовые математические методы и системы программирования для разработки и реализации алгоритмов решения прикладных задач

ОПК-2.3 - Владеет навыками использования и адаптирования существующих базовых математических методов и систем программирования для разработки и реализации алгоритмов решения прикладных задач

В результате освоения дисциплины обучающийся должен

- 1) Знать:
- а) основы теории массового обслуживания,
- б) известные в литературе модели открытых СМО,
- в) известные в литературе модели замкнутых СМО.
- 2) Уметь:
- а) построить математическую модель СМО,
- б) по математической модели проводить исследование и анализ производительности СМО,
- в) применить научный подход к решению проблемы очередей в различных системах.
- 3) Владеть:
- а) математическим аппаратом теории массового обслуживания,
- б) современными системами и средствами имитационного моделирования СМО на ЭВМ,
- в) приемами программирования моделирующих алгоритмов на ЭВМ.

4. Структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 6 зачетные единицы, 216 часов.

№ п /п	Раздел дисциплины	d		Виды учебной работы (в часах)				Оценочные средства для проведения
	Семестр	Лекции	Практиче ские занятия	Лаборат орные работы	КСР	CPC	промежуточной аттестации по разделам	
1	Математическ ие основы теории массового обслуживания	7	6		12		42	Коллоквиум
2	Открытые системы массового обслуживания	7	6		12		42	Коллоквиум
3	Замкнутые системы массового обслуживания	7	6		12		42	Коллоквиум
	ИТОГО Форма	атте	18 естации		36	Экза	126 амен (36	<u> </u> ਧ)

5. Содержание лекционных занятий по темам с указанием формируемых компетенций

№	Раздел дисциплины	Часы	Тема лекционного занятия, краткое содержание	Индикаторы достижения компетенции
1	Математические основы теории массового обслуживания	3	Цепи Маркова. Уравнения Колмогорова непрерывной марковской цепи.	ОПК-1.1, ОПК-1.2, ОПК-1.3 ОПК-2.1, ОПК-2.2, ОПК-2.3
2	Математические основы теории массового обслуживания	3	Простейший поток событий. Процессы гибели и размножения.	ОПК-1.1, ОПК-1.2, ОПК-1.3 ОПК-2.1, ОПК-2.2, ОПК-2.3
3	Открытые системы массового обслуживания	3	Модели М/М/1 и М/М/т.	ОПК-1.1, ОПК-1.2,

				ОПК-1.3
				ОПК-2.1,
				ОПК-2.2,
				ОПК-2.3
4	Открытые системы	3	Модели Эрланга и	ОПК-1.1,
	массового обслуживания		M/M/m/E.	ОПК-1.2,
				ОПК-1.3
				ОПК-2.1,
				ОПК-2.2,
				ОПК-2.3
5	Замкнутые системы	3	Модели M/M/1//N и	ОПК-1.1,
	массового обслуживания		M/M/m//N.	ОПК-1.2,
				ОПК-1.3
				ОПК-2.1,
				ОПК-2.2,
				ОПК-2.3
6	Замкнутые системы	3	Модели Энгсета, с	ОПК-1.1,
	массового обслуживания		ограниченной очередью и с	ОПК-1.2,
			ограниченным временем	ОПК-1.3
			ожидания	ОПК-2.1,
				ОПК-2.2,
				ОПК-2.3
				01111 2.3

6. Содержание практических занятий Практические занятия учебным планом не предусмотрены

7. Содержание лабораторных занятий

No	Раздел	Часы	Наименование	Индикаторы
п/п	дисциплины		лабораторной работы	достижения
				компетенции
1	Математические	12	Основные операторы	ОПК-1.1,
	основы		языка GPSS	ОПК-1.2,
	теории массового			ОПК-1.3
	обслуживания			ОПК-2.1,
				ОПК-2.2,
				ОПК-2.3
2	Открытые системы	12	Имитационное	ОПК-1.1,
	массового		моделирование открытых	ОПК-1.2,
	обслуживания		систем обслуживания на	ОПК-1.3
			ЭВМ. Решение задач.	ОПК-2.1,
				ОПК-2.2,
				ОПК-2.3
3	Замкнутые системы	12	Имитационное	ОПК-1.1,
	массового		моделирование замкнутых	ОПК-1.2,
	обслуживания		систем обслуживания на	ОПК-1.3
	-		ЭВМ. Решение задач	ОПК-2.1,
				ОПК-2.2,
				ОПК-2.3

8. Самостоятельная работа

No	Темы, выносимые на	Часы	Форма СРС	Индикаторы
п/п	самостоятельную			достижения
	работу			компетенции
1	Математически	42	Проработка	ОПК-1.1,
	е основы теории		теоретического	ОПК-1.2,
	массового		материала,	ОПК-1.3
	обслуживания		подготовка к	ОПК-2.1,
			лабораторным	ОПК-2.2,
			работам, решение задач,	ОПК-2.3
			подготовка к	
			коллоквиуму	
			по разделу	
2	Открытые	42	Проработка	ОПК-1.1,
	системы		теоретического	ОПК-1.2,
	массового		материала,	ОПК-1.3
	обслуживания		подготовка к	ОПК-2.1,
			лабораторным	ОПК-2.2,
			работам, решение задач,	ОПК-2.3
			подготовка к	
			коллоквиуму	
			по разделу	
3	Замкнутые	42	Проработка	ОПК-1.1,
	системы		теоретического	ОПК-1.2,
	массового		материала,	ОПК-1.3
	обслуживания		подготовка к	ОПК-2.1,
			лабораторным	ОПК-2.2,
			работам, решение задач,	ОПК-2.3
			подготовка к	
			коллоквиуму	
			по разделу	

9. Использование рейтинговой системы оценки знаний

При оценке результатов деятельности обучающихся в рамках дисциплины «Имитационное моделирование» используется рейтинговая система. Рейтинговая оценка формируется на основании текущего и промежуточного контроля. Максимальное и минимальное количество баллов по различным видам учебной работы описано в «Положении о балльнорейтинговой системе оценки знаний студентов и обеспечения качества учебного процесса» ФГБОУ ВО КНИТУ.

При изучении указанной дисциплины предусматривается сдача сдача трех коллоквиумов с максимальным количеством баллов 20 за каждый и трех лабораторных работ с максимальным количеством баллов 20 за каждый.

Экзамен проводится в устной форме по билетам. Оценка за экзамен выставляется по пятибалльной шкале, затем умножается на 8. В результате за экзамен студент может получить максимальное количество баллов – 40. При оценке ниже 24 баллов экзамен считается несданным.

В итоге максимальный рейтинг за изучение дисциплины составляет 100 баллов за семестр.

Оценочные средства	Кол-во	Min, баллов	Мах, баллов
Коллоквиум	3	18	30
Лабораторная работа	3	18	30
Экзамен	1	24	40
Итого:		60	100

10. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

Оценочные средства для проведения текущего контроля успеваемости, промежуточной аттестации обучающихся и итоговой (государственной итоговой) аттестации разрабатываются согласно положению о Фондах оценочных средств, рассматриваются как составная часть рабочей программы и оформляются отдельным документом.

11.Информационно-методическое обеспечение дисциплины

11.1. Основная литература

При изучении дисциплины «Имитационное моделирование» в качестве основных источников информации рекомендуется использовать следующую литературу.

Основные источники	Кол-во экз.
информации	
Строгалев В.П. Имитационное	ЭБС «Университетская библиотека
моделирование: учебное пособие /	онлайн»:
В.П. Строгалев И.О. Толкачева. –	http://biblioclub.ru/index.php?page=book_r
4-е изд. – Москва: МГТУ им. Н.Э.	ed&id=501168 доступ после регистрации с
Баумана, 2018. – 296 с. ISBN 978-5-	IP-адресов КНИТУ
7038-4825-8	
Салмина Н.Ю. Имитационное	ЭБС «Университетская библиотека
моделирование: учебное пособие /	онлайн»:
Н.Ю. Салмина; Томский	http://biblioclub.ru/index.php?page=book_r
Государственный университет	ed&id=480901 доступ после регистрации с
систем управления и	IP-адресов КНИТУ
радиоэлектроники (ТУСУР). –	
Томск: ТУСУР, 2015. – 118 с.	

11.2. Дополнительная литература

В качестве дополнительных источников информации рекомендуется использовать следующую литературу:

Дополнительные	Кол-во экз.	
информации		
Аверченков В.И. Основы	математического	ЭБС «Университетская
моделирования технических	систем: учебное	библиотека онлайн»:

пособие / В.И. Аверченков, В.П. Федоров, М.Л. http://biblioclub.ru/index.php? Хейфец. – 3-е изд., стер. – Москва: Флинта, 2016. page=book red&id=93344 - 271 c. ISBN 978-5-9765-1278-8

доступ после регистрации с ІР-адресов КНИТУ

11.3. Электронные источники информации

При изучении дисциплины «Имитационное моделирование» качестве рекомендуется использовать источников информации, следующие электронных источники:

Электронный каталог УНИЦ КНИТУ – режим доступа: http://ruslan.kstu.ru/

ЭБС «Университетская библиотека онлайн» -режим доступа

http://biblioclub.ru

ЭБС «IPRBooks» -режим доступа http://www.iprbookshop.ru

Согласовано:

Зав.сектором ОКУФ

образовании
«казанский починовиными исследовательский техновующих кий университет» Учетно-научный информационный центр

11.4. Современные профессиональные базы данных информационные справочные системы.

1. eLIBRARY.ru - крупнейший российский информационный портал в области науки, технологии, медицины и образования. Доступ свободный: www.elibrary.ru

2. zbMATH - самая полная математическая база данных, охватывающая материалы с конца 19 века. zbMath содержит около 4 000 000 документов, из более 3 000 журналов и 170 000 книг по математике, статистике, информатике, а также машиностроению, физике, естественным наукам и др. Доступ свободный: zbmath.org

3. Архив журналов РАН. Доступ свободный: elibrary.ru и libnauka.ru

12. Материально-техническое обеспечение дисциплины (модуля).

Учебные аудитории для проведения учебных занятий оснащены оборудованием:

1. smart-доска

Помещения для самостоятельной работы оснащены компьютерной техникой:

персональный компьютер с возможностью подключения к сети 1. «Интернет» и обеспечены доступом в электронную информационную среду КНИТУ. Допускается замена оборудования его виртуальными аналогами.

обеспечение Лицензированное программное свободно распространяемое программное обеспечение, используемое в учебном процессе при освоении дисциплины:

1. MS Visual Studio.

13. Образовательные технологии

Из общего количества часов 18 проводится в интерактивной форме. Интерактивные занятия реализуются с помощью дискуссий и лекцийдискуссий.