
На правах рукописи 
 

 

 

 

 

 

 

 

 

 

ХАСАНОВ НИЯЗ АДЕЛЕВИЧ 

 

 

МОДЕЛИРОВАНИЕ ЗАМКНУТЫХ СИСТЕМ МАССОВОГО 

ОБСЛУЖИВАНИЯ С ТРЕХКОМПОНЕНТНЫМ ПОТОКОМ ЗАЯВОК И 

ОГРАНИЧЕНИЕМ ПО ВРЕМЕНИ ОЖИДАНИЯ ЗАЯВКИ В ОЧЕРЕДИ 

 

 

 

1.2.2. Математическое моделирование, 

численные методы и комплексы программ 

 

 

 

 

АВТОРЕФЕРАТ 

диссертации на соискание ученой степени 

кандидата технических наук 

 

 

 

 

 

 

 

 

 

 

 

Казань – 2026 



 

Работа выполнена в федеральном государственном бюджетном образовательном 

учреждении высшего образования «Казанский национальный исследовательский 

технологический университет» 

Научный руководитель: доктор технических наук, доцент 

Титовцев Антон Сергеевич 

Официальные 

оппоненты: 

Пауль Светлана Владимировна 

доктор физико-математических наук, доцент, 

федеральное государственное автономное 

образовательное учреждение высшего образования 

«Национальный исследовательский Томский 

государственный университет», профессор кафедры 

теории вероятностей и математической статистики; 

Тарасов Вениамин Николаевич 

доктор технических наук, профессор, федеральное 

государственное бюджетное образовательное 

учреждение высшего образования «Поволжский 

государственный университет телекоммуникаций и 

информатики», профессор кафедры информатики и 

робототехнических систем. 

Ведущая организация: федеральное государственное бюджетное 

образовательное учреждение высшего образования 

«Казанский национальный исследовательский 

технический университет им. А. Н. Туполева–КАИ», 

г. Казань. 

 

Защита состоится 10 апреля 2026 года в 14.00 на заседании диссертационного 

совета 24.2.312.08, созданного на базе ФГБОУ ВО «Казанский национальный 

исследовательский технологический университет» (420015, г. Казань, ул. К. Маркса, 

д. 68, зал заседаний Ученого совета, А – 330). 

С диссертацией можно ознакомиться в библиотеке ФГБОУ ВО «Казанский 

национальный исследовательский технологический университет» и на сайте 

https://www.kstu.ru/servlet/contentblob?id=565115 

 

Автореферат разослан «      »           2026 года. 

 
 

 

 
Ученый секретарь 

диссертационного совета 24.2.312.08, 

доктор экономических наук, доцент 

 

 

 

Кудрявцева 

Светлана 
Сергеевна 



1 

 

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ 

Актуальность темы исследования. В современную эпоху цифровой 

трансформации вопросы, связанные с системами массового обслуживания (СМО), 

приобретают особую актуальность и значимость. В соответствии с указом 

Президента Российской Федерации № 145 «О стратегии научно-технического 

развития Российской Федерации», в соответствии с п. 21 а, е, и п. 22 стратегии, 

развитие современных интеллектуальных телекоммуникационных систем относится 

к одному из приоритетных направлений научно-технического развития страны.  

Цифровизация и автоматизация процессов приводят к существенному 

увеличению нагрузки на системы обработки запросов, что требует разработки новых 

подходов и методов эффективного управления. Это особенно критично для таких 

областей, как логистика, где необходимо эффективно управлять потоками товаров, 

телекоммуникации, где требуется распределение потоков в высокоскоростных сетях, 

и промышленность, где важна балансировка ресурсов для обеспечения 

беспрерывной работы с требуемым уровнем нагрузки.  

Современные технологические системы требуют эффективного управления 

ресурсами. Одним из ключевых направлений является минимизация времени 

простоя и потерь из-за перегрузок. Это обуславливает актуальность разработки 

математических моделей, учитывающих разнородные требования к обслуживанию. 

Постановка таких задач часто связана с накладыванием разнородных ограничений 

на количество обслуживающих устройств и время обслуживания. В качестве 

примера можно привести ожидание транспорта или ответа оператора, очереди в 

торговых центрах, движение автомобилей на дорогах и т.д. Управление очередями 

остается актуальным для всех уровней: от уровня индивидуума до корпораций. Для 

предприятий различных отраслей минимизация задержек в обслуживании является 

ключевым фактором повышения рентабельности и удержания клиентской базы. 

Решением подобных задач с применением научного подхода занимается теория 

массового обслуживания. 

Наиболее изученными в теории массового обслуживания (ТМО) являются 

СМО открытого типа с упрощенными предположениями о поведении заявок, в то 

время как СМО с ограниченным источником остаются значительно менее 

исследованными, особенно в части разработки математических моделей. В 

частности, для замкнутых СМО отсутствуют комплексные модели, адекватно 

описывающие системы, в которых заявки демонстрируют разнородное поведение: 

часть готова ждать, часть требует немедленного обслуживания, а часть уходит из 

очереди при превышении заданного временного порога. Зачастую анализ и 

конфигурация подобных систем вынужденно опираются на упрощенные 

представления о поведении заявок и системных ограничениях. Однако, такие 

допущения не всегда соответствуют реальным условиям. Сочетание свойств 

замкнутости системы, ограничения на время ожидания и трехкомпонентного потока 

является ключевой особенностью многих существующих систем, но слабо отражено 

в существующих исследованиях. Отсутствие аналитических решений для замкнутых 

СМО с таким комплексом ограничений создает значительный разрыв между теорией 

и практикой, вследствие чего затрудняется проектирование и эффективное 

управление соответствующими системами. На практике это вынуждает использовать 
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либо упрощенные модели, дающие большую погрешность, либо прибегать к 

трудозатратному имитационному моделированию для каждой отдельной 

конфигурации. 

В данной работе впервые представлена математическая модель СМО с 

разнородным характером входного потока, ограничением на ресурс источника и на 

время ожидания в очереди. Подобного рода системы могут быть использованы для 

мониторинга производственных процессов (станки, прессы, автоматизированные 

линии, системы контроля качества), в IT инфраструктуре (облачные вычисления, 

системы облачного сканирования данных), в логистике и транспорте, в медицинских 

учреждениях и телекоммуникациях, call-центрах, а значит, разработка комплекса 

инструментов для анализа характеристик замкнутой СМО с ограничением на время 

ожидания и трехкомпонентным потоком заявок предоставит недостающий научно 

обоснованный инструмент для оценки функционирования и конфигурирования 

подобных систем.  

Степень разработанности темы. Первые работы в сфере массового 

обслуживания принадлежат датскому математику и инженеру А.К. Эрлангу, который 

заложил основы ТМО. Работая в международной телефонной компании, Эрланг 

столкнулся с проблемой обеспечения определения оптимального количества 

обслуживающих каналов. Будучи специалистом в области математики и статистики, 

А.К. Эрланг был первым практическим исследователем задач массового 

обслуживания и посвятил значительную часть своей жизни разработке теории 

телефонного трафика и исследованиям в области анализа телефонных сетей. Его 

работы заложили основу дальнейшего развития ТМО. В частности, А.К. Эрланг 

разработал формулы для определения минимального количества телефонных 

каналов, необходимых для обеспечения заданного уровня обслуживания. Он также 

ввел понятие "время ожидания" и разработал методы для оценки вероятности отказа 

в обслуживании. Эти работы оказали огромное влияние на развитие теории 

массового обслуживания и стали основой для дальнейших исследований. 

Позднее, советский математик и выдающийся ученый А.Я. Хинчин в 

сотрудничестве со специалистами московского телефонного дела провел ряд 

исследований в области ТМО. Основное направление его научной деятельности 

связано с изучением строения потока входящих требований. Именно решению этих 

задач посвящена его монография и последующие статьи. В своих исследованиях 

А.Я. Хинчин ввел понятие пуассоновского потока случайных событий, позволяющее 

моделировать случайные потоки поступающих заявок в СМО. Он также разработал 

методы для оценки вероятности отказа в обслуживании и среднего времени 

ожидания.  

Значительный вклад в ТМО внес А.Н. Колмогоров, разработавший теорию 

эргодических свойств марковских процессов, что позволило более точно 

моделировать поведение СМО в долгосрочной перспективе. Он также ввел понятие 

марковских цепей, которые стали основой для дальнейших исследований в области 

ТМО. Совместно с А.Я. Хинчиным, А.Н. Колмогоров разработал теорию случайных 

процессов, что дало возможность моделировать случайные процессы в СМО.  

Строгое математическое изложение основ ТМО с применением численных 

методов впервые было изложено в работах Б.В. Гнеденко и Б.В. Коваленко. Основы 
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ТМО и ее применение для моделирования простейших марковских процессов в 

различных областях экономики описаны в трудах Л.Г Лабскера и Л.О. Бабешко. Л.Г 

Лабскер и Л.О. Бабешко также представили разработанные для персонального 

компьютера программы, позволяющие производить расчеты простейших СМО. 

В настоящее время классические модели M/M/n широко используются для 

описания однородных потоков заявок, не учитывая при этом возможность наличия в 

потоке заявок разного типа. Последние исследования, в частности, работы  

А.П. Кирпичникова рассматривают системы с ограничениями по времени ожидания, 

но они не включают гетерогенные потоки заявок. Таким образом, данная работа 

«заполняет этот пробел», предлагая математическую модель замкнутой системы с 

трехкомпонентным потоком заявок и ограничением по времени ожидания. 

Цель и задачи исследования. 

Целью настоящего исследования является разработка математических 

моделей, алгоритма и комплекса программных средств для анализа характеристик 

замкнутых СМО с трехкомпонентным потоком заявок и ограничением по времени 

ожидания заявки в очереди.  

Задачи исследования: 

1. Разработать математическую модель замкнутой СМО с учетом трех типов 

входящих заявок и ограничения по времени ожидания заявки в очереди, получить в 

общем виде формулы для расчета характеристик модели. 

2. Разработать численный алгоритм исследования СМО на предмет 

определения параметров модели, обеспечивающих требуемый уровень 

эффективности функционирования системы, а также разработать рекомендации для 

применения и адаптации полученной модели к реальным объектам.  

3. Разработать имитационную модель замкнутой СМО с учетом трех типов 

входящих заявок и ограничения по времени ожидания заявки в очереди. 

4. Разработать комплекс программных средств и провести вычислительные 

эксперименты, необходимые для оценки характеристик СМО. 

Объектом исследования являются СМО, функционирование которых 

предполагает наличие очередей, к примеру call-центры, логистические комплексы, 

телекоммуникационные сети, контрольно-пропускные пункты, сборочные 

производства и пр. 

Предметом исследования являются модели, алгоритмы и методы, 

описывающие замкнутые СМО, в которых поступающие заявки подразделяются на 

три типа: заявки, требующие немедленного обслуживания и покидающие систему 

при отсутствии свободных каналов, заявки, дожидающиеся обслуживания до конца, 

и заявки, у которых временя ожидания ограничено. 

Соответствие исследования паспорту научной специальности. Область 

диссертационного исследования соответствует следующим пунктам паспорта 

научной специальности 1.2.2. Математическое моделирование, численные методы и 

комплексы программ: п.6. Разработка систем компьютерного и имитационного 

моделирования, алгоритмов и методов имитационного моделирования на основе 

анализа математических моделей (технические науки); п.8. Комплексные 

исследования научных и технических проблем с применением современной 

технологии математического моделирования и вычислительного эксперимента; п.9.  
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Постановка и проведение численных экспериментов, статистический анализ их 

результатов, в том числе с применением современных компьютерных технологий 

(технические науки). 

Научная новизна представленных результатов характеризуется развитием 

методов математического моделирования СМО, методов и алгоритмов исследования 

СМО, и заключается в следующем: 

1. Разработана новая математическая модель замкнутой СМО с 

трехкомпонентным входным потоком заявок, отличающаяся сочетанием свойств 

известных моделей замкнутых СМО с ограниченным временем ожидания заявки в 

очереди, модели Энгсета, а также классической модели многоканальной замкнутой 

СМО. Аналитическими методами получены выражения для расчета вероятностных, 

числовых и временных характеристик СМО в стационарном режиме 

функционирования, позволяющие получать численные значения ключевых 

характеристик СМО (п. 8 паспорта 1.2.2). 

2. Разработан численный алгоритм поиска эффективных режимов работы 

СМО, отличающийся возможностью определения требуемых сочетаний вводных 

данных для достижения заданной эффективности функционирования СМО, 

критерием которой является относительная пропускная способность системы. 

Выявлено, что при добавлении во входной поток «нетерпеливых» заявок характер 

зависимости интенсивности обслуживания от суммарной интенсивности входного 

потока при фиксированной величине относительной пропускной способности 

меняется со степенного на линейный (п. 8 паспорта 1.2.2). 

3. Разработана имитационная модель СМО с использованием языка 

программирования Python, основанная на методе Монте-Карло и позволяющая 

производить вычисление характеристик системы в нестационарном режиме 

функционирования (п. 6 паспорта 1.2.2).  

4. Разработан комплекс специализированных программных средств для 

проведения вычислительных экспериментов, отличающийся возможностью расчета 

характеристик замкнутых СМО и оценки её эффективности (п. 9 паспорта 1.2.2). 

Теоретическая значимость исследования заключается в расширении 

математического аппарата ТМО. В частности, в работе представлены: 

– неисследованная ранее математическая модель замкнутой СМО с 

трехкомпонентным потоком заявок и ограничением по времени ожидания заявки в 

очереди; 

– математическая формализация первых и вторых моментов числовых и 

временных характеристик модели в стационарном режиме работы; 

– методы и алгоритмы поиска эффективных режимов работы замкнутых СМО 

с двухкомпонентным и трехкомпонентным потоком заявок; 

– предложены рекомендации по внедрению математической модели для 

адаптации к реальным техническим системам.  

Практическая значимость. Область применения результатов работы 

охватывает широкий спектр отраслей, включая производственно-техническую сферу, 

торговлю, управление производством и производственными процессами, телефонию 

и связь, а также логистику. Полученные результаты применимы для систем, где 

разнородные типы заявок могут существенно влиять на эффективность 
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обслуживания. В таких системах часто встречаются различные типы требований, 

направленных на применение различного подхода к организации обслуживания. 

Например, модель может быть использована для организации работы call-центров, 

где входящие запросы делятся на срочные (жалобы), стандартные (консультации) и 

отложенные (обратная связь). Также полученная математическая модель может 

служить основой для проведения дальнейших исследований в рамках ТМО, что 

позволит разрабатывать более эффективные и надежные системы для различных 

областей применения. 

Методология и методы исследования. В работе при построении 

математической модели применены методы теории вероятностей, а также теории 

случайных процессов и цепей Маркова. Для решения трансцендентных уравнений 

применялись соответствующие численные методы. Имитационное моделирование, 

основанное на методе Монте-Карло, осуществлялось с использованием языка 

программирования Python. 

Положения, выносимые на защиту. 

1. Математическая модель замкнутой СМО с трехкомпонентным потоком 

заявок и ограничением по времени ожидания заявки в очереди. 

2. Разработанный алгоритм поиска сочетаний параметров математической 

модели СМО, обеспечивающих требуемое качество обслуживания и полученные 

численные результаты расчетов. 

3. Имитационная математическая модель СМО, позволяющая получить 

численные результаты ключевых характеристик СМО в нестационарном режиме. 

4. Программное обеспечение, применяемое для расчетов и изучения реакций 

основных характеристик СМО на изменение исходных данных и оценки ее 

эффективности. 

Степень достоверности результатов диссертационной работы 

обеспечивается корректной постановкой задач, строгим выполнением 

математических выкладок, проверкой полученных решений на соответствие 

известным случаям, описанным другими авторами. 

Апробация. Разработанные методы и алгоритмы внедрены в ООО «НПФ 

Геоник», с. Набережные Моркваши Верхнеуслонского района РТ, в части решений 

для анализа загруженности сервисных ресурсов и выявления факторов, 

ограничивающих эффективность обслуживания оборудования. 

Результаты исследований используются в учебном процессе ФГБОУ ВО 

КНИТУ при обучении студентов по направлениям подготовки 01.03.02 «Прикладная 

математика и информатика» и 02.03.03 «Математическое обеспечение и 

администрирование информационных систем».  

Результаты диссертационной работы докладывались на 1-й международной 

научной конференции «Школа теории массового обслуживания» (г. Томск, 2025), 

XXXVIII международной конференции «Математические методы в технике и 

технологиях – ММТТ-38» (г. Самара, 2025), научной конференции КНИТУ 

(г. Казань, 2023). 

Личный вклад автора. Все представленные результаты получены автором 

лично. В зарегистрированном электронном ресурсе автору принадлежит ведущая 
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роль в разработке программного обеспечения для расчета необходимых 

характеристик. 

Публикации. По теме диссертации опубликовано самостоятельно и в 

соавторстве 9 печатных работ: 4 работы в рецензируемых научных изданиях, 

рекомендованных ВАК РФ, 5 – в прочих изданиях, в том числе зарегистрирован 

электронный ресурс. 

Структура и объем работы. Диссертационная работа состоит из введения, 

шести глав, заключения, списка литературы и приложений. Полный объём 

диссертации составляет 162 страницы, включая 65 рисунков и 22 таблицы. 

Библиографический список включает 96 литературных источников. 

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ 

Во введении показана актуальность темы диссертационной работы, 

приведены её цель, задачи, научная новизна, теоретическая и практическая 

значимость, приводится краткий обзор глав. 

В главе 1 рассмотрены актуальные исследовательские работы, имеющие 

отношение к СМО с ограничениями, проведен обзор результатов последних 

исследований. Выполнена постановка задачи диссертационной работы. 

В п. 1.1 приводится анализ современных исследований, посвященных 

моделированию стохастических процессов в СМО. Рассматриваются основные 

подходы к изучению характеристик СМО с гетерогенным входным потоком и 

ограничениями. Установлено, что замкнутые СМО остаются малоизученными по 

сравнению с открытыми СМО, несмотря на их практическую значимость. Отдельно 

рассмотрены СМО с немарковскими процессами и методы их моделирования, а 

также подходы к управлению приоритетами заявок. Анализ показал, что в условиях 

цифровой трансформации классические модели не всегда обеспечивают 

достаточную точность из-за игнорирования разнородности заявок и временных 

ограничений. 

В п. 1.2 приводится математическая постановка задачи исследования.  

Пусть на вход замкнутой многоканальной СМО с числом доступных станций 

обслуживания m, поступает пуассоновский входной поток заявок трех типов: 0-го, 

1-го и 2-го. Интенсивность поступления заявок каждого типа определяется 

собственными параметрами: λ0 – для заявок 0-го типа, λ1 – для заявок 1-го типа и λ 

для заявок 2-го типа. Предельно возможное число заявок, которое может 

одновременно находиться в системе (в очереди и на обслуживании) ограничено 

величиной N и числено равно емкости источника. 

Поведение заявок в системе зависит от их типа и регламентируется 

следующими правилами: 

– заявки 0-го типа требуют немедленного обслуживания. В случае отсутствия 

свободных каналов такая заявка покидает систему без постановки в очередь.  

– заявки 1-го типа обслуживается немедленно при наличии свободных 

каналов. Если все каналы заняты, заявка помещается в очередь с ограниченным 

временем ожидания. При превышении допустимого срока ожидания заявка покидает 

систему необслуженной; 
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– заявки 2-го типа всегда принимаются в систему, независимо от занятости 

каналов. При отсутствии свободных каналов они становятся в очередь и ожидают 

начала обслуживания неограниченное время. 

При наличии свободных каналов система принимает все типы заявок, и 

интенсивность входного потока равна: Λ0 = λ0 +λ1+λ. При отсутствии свободных 

каналов заявки 0-го типа немедленно отклоняются, в связи с чем интенсивность 

входного потока сокращается до: Λ1 = λ1+λ. 

Обозначим: 

μ – интенсивность обслуживания заявки одним обслуживающим устройством; 

ν – интенсивность ухода заявок по истечении предельного времени ожидания. 

В результате получим марковский случайный процесс ( )X t  с дискретными 

состояниями и непрерывным временем, в котором навстречу поступающим заявкам 

движется поток обслуженных и покинувших очередь заявок (рис.1). Обозначим 

через х общее число заявок, находящихся в системе (как в очереди, так и на 

обслуживании). 

 
Рис. 1 – Граф состояний СМО (разработано автором) 

 

Пусть в момент времени t система находится в одном из возможных 

состояний x (x = 0, 1,..., N), которое характеризует общее число необслуженных 

требований в системе. Тогда вероятность того, что на интервале ( ),t t t+   

произойдет переход 1x x→ +  (приход заявки в систему), равна λx(x)Δt+o(Δt), где: 

 

λx(x) =  {
(N – x)Λ0, при 0 ≤ x < m, 
(N – x)Λ1, при m ≤ x < N. 

 (1) 

Вероятность того, что на интервале ( ),t t t+   произойдет переход 1x x→ −  

(выход заявки из системы), равна μ
x
(x)Δt+o(Δt), где: 

μ
x
(x) =  {

xμ, при 0 < x < m, 
(mμ + (x – m)ν, при m ≤ x ≤ N. 

 (2) 

 

Вероятность отсутствия изменения состояния равна 1 – (λx(x)+μ
x
(x))Δt+o(Δt). 

Следовательно, уравнение полной вероятности для состояния x с учетом 

приведенных постулатов запишется в виде: 

Px(t+Δt)=λx–1(x)Px–1(t)Δt+[1–(λx(x)+μ
x
(x))Δt]Px(t)+μ

x+1
(x)P

x+1
(t)Δt+o(Δt), (3) 

откуда разделив обе части на t  и устремив t  к нулю, получим систему 

дифференциальных уравнений в виде: 
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dP0(t)

dt
= – NΛ0P0(t) +μP1(t), х=0 

dPx(t)

dt
=λx–1(x)Px–1(t)–(λx(x)+μ

x
(x))Px(t)+μ

x+1
(x)P

x+1
(t), x=1, 2, ..., N–1 (4) 

dPN(t)

dt
= – [mμ + (N – m)ν]PN(t) +Λ1PN–1(t), х=N 

Полученная система дифференциальных уравнений Колмогорова описывает 

нестационарный режим работы системы. Система уравнений (4) имеет кусочно-

линейную структуру интенсивностей из-за наличия порогового значения m, при 

превышении которого изменяется структура входного потока. Ввиду чего, 

нахождение аналитического решения для общего случая затруднено. В предельном 

случае при →t  в системе устанавливается стационарный режим, в ходе которого 

система бесконечно блуждает по всем возможным состояниям, но их вероятности не 

зависят от времени. Поэтому существуют предельные вероятности стационарных 

состояний системы ( )limx x
t

p p t
→

= ,   x = 0, 1, 2, …, N. При этом система 

дифференциальных уравнений Колмогорова (4) превращается в систему 

алгебраических уравнений, которая решается относительно вероятностей 

возможных состояний системы pх = pi. Решение этой системы найдено путем вывода 

рекуррентных соотношений между вероятностями состояний pi и последующего 

применения условия нормировки ∑ p
i = 1N

i=0 . Учитывая, что для большинства 

практически значимых сценариев время работы системы значительно превышает 

длительность переходных процессов, определение характеристик СМО именно в 

стационарном режиме представляет наибольший практический интерес. 

В главе 2 построена математическая модель замкнутой СМО с 

трехкомпонентным потоком заявок и ограничением по времени ожидания заявки в 

очереди. Получены математические формулы для нахождения вероятностных, 

числовых и временных характеристик СМО в стационарном режиме работы. 

Обозначим Ri = Λi µ⁄ , β= ν µ⁄ . 
В п. 2.1 выведены общие формулы для расчета вероятностных характеристик 

СМО в стационарном режиме, включая: 

– вероятность простоя системы P0: 

( ) ( )

1
1

0 01
0

0 1

! !
1

! ! ! !

i mi mm N

i i m i m

N R N RR m
P

N i i N i m 

−
−−

= = + −

     
 = + +    

− −      

  ;  (5) 

– стационарное распределение вероятностей состояний СМО: 

( )

( )

0
0

1

01
0

!
,

! !

!
1 ,

! !

i

i i m m

i m

N R
P i m

N i i
P

N RR m
P m i N

N i m 

−−

−




−
= 

    
+       −    

;  (6) 

– вероятности немедленного обслуживания, отказа в обслуживании и ожидания: 

( )
1

0

1 m

но k
k

P N k P
N k

−

=

= −
−
 ; ( )0

0

1 N

k

k m

отк N k P
N k

P


=

= −
 −

 ; ( )1

0

1 N

ож k
k m

P N k P
N k =


= −
 −

 .    (7) 
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В п. 2.2 выведены общие формулы для расчета числовых характеристик СМО 

в стационарном режиме при найденных pi, включая: 

– среднее число заявок в системе 
0

N

k
k

m lk kP
=

+= = ;            (8) 

– среднее число заявок на обслуживании ( )
1

0 1 0

m N m

k k k

k k m k

m kP m P m m k P
−

= = + =

= + = − −   ;   (9) 

– среднее число заявок в очереди ( )
1

N

k

k m

l k m P k m
= +

= − = − ;         (10) 

и их вторые моменты: 2 2

0

N

k
k

k k P
=

= ; ( )
22

1

N

k

k m

l k m P
= +

= − ; 2 2 2

0 1

m N

k k

k k m

m k P m P
= = +

= +  ; (11) 

– абсолютная и относительная пропускная способность СМО: 

А=(λ0Pно+Λ1)(N–k̅)–νl;̅  ( )0q A N k=  − .    (12) 

В п. 2.3 выведены формулы для расчета временных характеристик СМО в 

стационарном режиме, включая: 

– моменты времени ожидания заявки в очереди  

( )

( )
( )

( )

( )

1 11

1

j

ож

N
j

jk
k m

t
k m

N k P
N k m k m 

−

=  
 

− +
−

− + − +
=  , 1,2j = ,   (13) 

где ( )1
j

k m− + - символ Похгаммера; 

– среднее время нахождения заявки в системе Akttt обсложидсист =+= .        (14) 

В главе 3 с использованием языка программирования Python и метода  

Монте-Карло разработана имитационная модель рассматриваемой СМО, 

позволяющая определять числовые характеристики СМО в нестационарном режиме. 

Также получено аналитическое решение системы уравнений Колмогорова (4) для 

частного случая PN(t)≈0, λ0  = 0, ν = μ. 

В п. 3.1 в виде программы на языке программирования Python с применением 

метода Монте-Карло разработана имитационная модель рассматриваемой СМО. Для 

каждого состояния системы x в соответствии с графом, приведенном на рис. 1 

определены интенсивности переходов: 

Ix → x+1  = {

NΛ0,  x =0

(N – x)Λ0,  0 < x < m

(N – x)Λ1,  m ≤ x < N,

         (15) 

Ix →x – 1  = {

xμ, 0 < x < m

mμ + (x – m)ν,  m ≤ x < N

mμ + (N – m)ν,  x = N.

        (16) 

Для формирования временных параметров системы использован метод 

обратного преобразования, позволяющий получать значения, распределенные по 

экспоненциальному закону. Данный метод реализуется через преобразование 

равномерно распределенной случайной величины U ∈ (0,1) в экспоненциально 

распределенную по формуле: 

Δt = –
ln(U)

λ
,      (17) 
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где λ – интенсивность события (прибытия, обслуживания или таймаута). 

Определение следующего события системы на временном интервале  

(t, t + Δt) производится путем генерации равномерно распределенного случайного 

числа r ∈ (0, Iсумм), где Iсумм – суммарная интенсивность переходов для текущего 

состояния системы, Iсумм = Ix → x + 1 + Ix → x – 1. Если полученное значение r 

находится на интервале (0, Ix → x+1), система совершает переход x → x + 1, в 

обратном случае x → x – 1. Блок-схема алгоритма имитационного моделирования 

СМО приведена на рис. 2. 

 
Рис. 2 – Блок-схема алгоритма имитационного моделирования СМО 

 (разработано автором) 
 

В соответствии с полученными результатами выход замкнутой СМО с 

трехкомпонентным потоком заявок и ограничением по времени ожидания на 

квазистационарный режим занимает приблизительно 11 часов или 28 операций 

обслуживания заявок одним обслуживающим устройством. 

Сопоставление результатов вычислительных экспериментов с аналитической 

моделью показало высокую степень соответствия, что подтвердило корректность 

реализации. Относительное отклонение между максимальными значениями 

вероятностей в момент выхода системы на квазистационарный режим, 

определенными методом Монте-Карло и аналитическим решением, полученным для 

стационарного режима, не превышает ±1,5 %. 
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В п. 3.2 с использованием метода производящих функций получено решение 

системы дифференциальных уравнений (4) для частного случая, при следующих 

условиях: 1) вероятность нахождения в системе N заявок стремится к нулю PN(t)≈0; 

2) 0-й тип заявок исключен из входного потока λ0  = 0, в результате чего 

интенсивность входного потока одинакова при x < m и x ≥ m и равна Λ1; 

3) Интенсивности обслуживания и ухода нетерпеливых заявок равны между собой 

ν = μ.  

При выполнении этих условий решение системы дифференциальных 

уравнений (4) имеет вид: 

Px(t) = 
N!

x!(N – x)!
(

μ + Λ1e – (Λ1  + μ)t

Λ1  + μ
)

N – x

(
Λ1(1 – e – (Λ1  + μ)t)

Λ1  + μ
)

x

 (18) 

Получение аналитического решения (4) методом производящих функций для 

общего случая затруднено из-за кусочно-линейной структуры интенсивностей. 

Полученное аналитическое решение для частного случая позволяет определять 

распределение вероятностей системы для произвольных моментов времени при 

PN(t)≈0, λ0  = 0, ν = μ, что позволяет рассчитывать характеристики СМО в 

нестационарном режиме по формулам (7) – (14). Графики временной динамики 

вероятностей Px(t), полученные для частного случая в соответствии с (18) и 

определенные методом Монте-Карло приведены на рис. 3. 

 

Рис. 3 – Сравнение временных зависимостей Px(t), полученных:  

а) в аналитическом виде для частного случая и  

б) методом Монте-Карло (получено автором) 

 

Полученные значения максимальных значений вероятности Pmax(t), среднего 

числа заявок в системе 𝑥̅(t) и времени выхода системы на квазистационарный режим 

tст, представлены в таблице 1. 
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Таблица 1 – Полученные характеристики системы по времени 

Характеристика 
Аналитическое решение 

(частный случай) 
Метод  

Монте-Карло 

Pmax(t), t = 1,0 ч 0,157 0,157 

Pmax(t), t = 2,0 ч 0,147 0,145 

Pmax(t), t = 5,8 ч 0,143 0,144 

𝑥̅(t), t = 1,0 ч 9,097 9,083 

𝑥̅(t), t = 2,0 ч 12,125 11,930 

𝑥̅(t), t = 5,8 ч 13,613 13,615 

tст, ч 5,8 5,1 

 

Результаты вычислительных экспериментов демонстрируют высокую степень 

соответствия между аналитическим решением и результатами численного 

моделирования. В соответствии с таблицей 1, предельное относительное отклонение 

между значениями максимальных вероятностей, полученных в аналитическом 

решении для частного случая, и методом Монте-Карло не превышает ±1,3 %. 

В главе 4 проведено численное моделирование различных режимов работы 

замкнутой СМО с трехкомпонентным потоком заявок и ограничением по времени 

ожидания заявки в очереди в стационарном режиме. Определены вероятностные, 

числовые и временные характеристики СМО. Рассмотрены случаи наличия и 

отсутствия в потоке «нетерпеливых заявок», на основании чего сделаны выводы о 

влиянии 0-й компоненты потока на основные характеристики системы. 

В п. 4.1 приведены исходные данные, используемые для проведения 

дальнейших расчетов. 

В п. 4.2 проведена численная оценка и анализ параметров СМО в 

стационарном режиме. Определено распределение вероятностей состояний СМО. 

Рассчитаны основные вероятностные характеристики СМО, в частности, 

вероятность немедленного обслуживания, отказа и ожидания.  

В п. 4.3 получены результаты расчета ключевых метрик, характеризующих 

распределение заявок между состояниями системы: 

– среднего числа заявок в системе k̅,  

– среднего числа заявок на обслуживании m̅, 

– среднего числа заявок в очереди l,̅ 

– дисперсии и СКО данных параметров. 

Для анализа влияния 0-й компоненты на поведение системы введено понятие 

двухкомпонентного Λ1 и трехкомпонентного потока Λ0 с сохранением суммарной 

интенсивности Λ0=Λ1. Выявлено, что при увеличении суммарной интенсивности 

входного потока значения k̅, m̅ и l ̅ также возрастают, что свидетельствует о 

положительной корреляции между этими параметрами и Λ0. Однако, доля заявок  

0-го типа в суммарном входящем потоке, ведет к снижению значений параметров k̅ и 

l ̅ по сравнению с двухкомпонентной системой ввиду отказов в обслуживании. 

Определено, что в случае отсутствия 0-й компоненты в потоке заявки незначительно 
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быстрее попадают на обслуживание при малых значениях параметра Λ0, что, однако, 

является несущественным, т.к. при увеличении величины Λ0 все обслуживающие 

устройства оказываются заняты, и заявки вынуждены ожидать в очереди. 

Степень влияния скорости обслуживания (µ) и интенсивности уходов заявок 

(ν) на параметр l ̅ различна и в каждом отдельном случае зависит от величины и 

соотношения данных параметров. В условиях непрерывной работы системы, 

изменение параметра ν, в отличие от изменения интенсивности обслуживания μ, 

практически не влияет на параметр m̅. 

В п. 4.4 приведены результаты расчета пропускной способности СМО в 

стационарном режиме. Выявлено, что увеличение количества станций 

обслуживания способствует линейному росту пропускной способности СМО. 

Наличие заявок 0-го типа во входном потоке снижает относительную пропускную 

способность q. Для полученных зависимостей можно сказать, что результатом 

отсутствия во входном потоке заявок 0-го типа будет повышение потенциально 

возможной пропускной способности на 10-25 %.  

Увеличение скорости обслуживания µ в рассматриваемой системе в 3 раза 

даст прирост относительной пропускной способности приблизительно на 65 %. 

Параметр ν незначительно влияет на относительную пропускную способность q и 

для рассматриваемой системы оказывает влияние на параметр q лишь в небольшом 

диапазоне значений в случае наличия 0-й компоненты. Для двухкомпонентного 

потока относительная пропускная способность q более чувствительна к изменениям 

параметра ν, так как при отсутствии заявок, которые получают отказ в 

обслуживании, число заявок в очереди l ̅ значительно увеличивается, что снижает 

нагрузку входного канала и увеличивает долю необслуженных заявок.  

В п. 4.5 рассчитаны временные характеристики СМО в стационарном режиме. 

Выявлено, что при текущей конфигурации СМО, кратное увеличение интенсивности 

входного потока Λ0 относительно исходных данных при неизменной скорости 

обслуживания µ не ведет к кратному увеличению среднего времени ожидания заявки 

в очереди tож̅̅ ̅̅ , т.к. заявки начинают покидать очередь необслуженными ввиду 

ограничения на время ожидания ν.  

В главе 5 представлен алгоритм, использующий численный метод Ньютона с 

адаптивной релаксацией и итерационный метод поиска по сетке для поиска 

эффективных режимов работы замкнутой СМО с трехкомпонентным потоком заявок 

и ограничением по времени ожидания заявки в очереди в стационарном режиме. По 

результатам вычислительных экспериментов построены графики зависимостей для 

ключевых параметров системы при обеспечении требуемого уровня обслуживания 

по параметру относительной пропускной способности и среднему времени 

ожидания. 

В п. 5.1 выполнена постановка задачи поиска эффективных режимов работы 

СМО. В качестве основных критериев, характеризующих эффективность работы 

системы использованы относительная пропускная способность q и время ожидания 

заявки в очереди tож̅̅ ̅̅ .  

В п. 5.2 приведены результаты поиска сочетаний параметров интенсивности 

обслуживания μ и интенсивности входного потока Λ0,1, необходимые для 
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обеспечения эффективной работы системы по параметру относительной пропускной 

способности q=70 % и реализующие условие: 

q
i
(μ

i
 , Λi)=0,7.      (19) 

Для решения поставленных в п. 4.2, 4.4, 4.5, 4.9 задач в диссертационной 

работе применен метод Ньютона с адаптивной релаксацией.  

Для реализации метода Ньютона использована формула: 

µ
n+1

=µ
n
– α·

f (µ
n
)

f '(µ
n
)
, (20) 

где f (µ
n
) – вспомогательная функция, f (µ

n
)= q(μ

n
 , Λi) – 0,7; 

µ
n
 – интенсивность обслуживания на предыдущей итерации; 

µ
n+1

– интенсивность обслуживания на текущей итерации; 

α – коэффициент релаксации, регулирующий длину шага, (0, 1]. 

Начальное расхождение определяется как: f (µ
0
) = q(μ

0
 , Λi) – 0,7. Расхождение 

на первом шаге, в свою очередь: f (µ
1
) = q(μ

1
 , Λi) – 0,7.  

В результате, для диапазона интенсивностей входного потока Λ0,1 определены 

значения минимальных интенсивностей обслуживания μ, реализующие условие (19). 

Изолинии q(μ, Λ0)=70 % и q(μ, Λ1)=70 % представлены на рис. 4. 

 

Рис. 4 – Изолинии q(μ, Λ0)=70 % и q(μ, Λ1)=70 % (получено автором) 
 

Таким образом, выявлено, что для трёхкомпонентного потока требуемые 

значения μ для выполнения поставленного условия выше, чем для 

двухкомпонентного. Для математического обоснования характера зависимостей 

между Λ0,1 и μ был проведен комплексный статистический анализ с применением 

регрессионного моделирования в среде Wolfram Engine. Таким образом, при 

добавлении во входной поток заявок 0-го типа зависимость интенсивности 

обслуживания от интенсивности входного потока меняется со степенной на 

линейную. 

В п. 5.3 проанализировано влияние ν на фиксированный параметр 

относительной пропускной способности q. Выявлено, что двухкомпонентная 
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система более чувствительна к потерям. Ввиду «буфера» в виде заявок 0-го типа, 

чем выше параметр λ0 в трехкомпонентном потоке, тем меньшее влияние 

ограничения времени ожидания оказывает на относительную пропускную 

способность. Рост параметра λ0 в трехкомпонентной системе не только 

стабилизирует работу СМО, но и снижает зависимость относительной пропускной 

способности от ν, что делает ее более гибкой в условиях переменной нагрузки.  

В п. 5.4 приведены результаты поиска сочетаний параметров т и μ, 

обеспечивающих выполнение условия: 

q
i
(mi , μi

)=0,7.      (21) 

Получены графики зависимости минимальной интенсивности обслуживания μ 

для трехкомпонентного потока требований, необходимой для достижения 

относительной пропускной способности q≥70 %, при различных значениях 

количества обслуживающих устройств m.  

Рассмотрен случай параллельного увеличения величины входного потока. 

Выявлено, что увеличение Λ0 требует увеличения интенсивности обслуживания μ 

или числа обслуживающих устройств для поддержания эффективного режима 

работы системы.  

В п. 5.5 приведены результаты поиска сочетаний параметров т и Λ0,1, 

обеспечивающих выполнение условия: q
i
(mi , Λi)=0,7. 

Построены графики изолиний q(m, Λ0)=70 %, q(m, Λ1)=70 %. Выявлено, что с 

ростом интенсивности входного потока заявок 0-го типа увеличивается и количество 

отказов в системе, накладывая ограничения на входящий поток для удовлетворения 

требования q≥70 %. Таким образом, снижение интенсивности поступления 

«нетерпеливых» заявок позволяет существенно увеличить входящий поток заявок  

1-го и 2-го типа при сохранении того же уровня относительной пропускной 

способности q.  

Рассмотрен случай параллельного увеличения скорости обслуживания μ. 

Большее количество каналов обслуживания позволяет снизить нагрузку на вход 

системы, что, в свою очередь, позволяет обрабатывать больший объем входящих 

заявок без снижения качества обслуживания. При фиксированном количестве 

обслуживающих устройств m увеличение интенсивности обслуживания μ приводит 

к росту допустимой интенсивности входящего потока Λ0.  

В п. 5.6 приведены результаты поиска сочетаний параметров т и Λ0, Λ1, 

обеспечивающих выполнение условия: 

tож̅̅ ̅̅
i
(mi,Λi)=k·tож0

̅̅ ̅̅ ̅(m0,Λi),     (22) 

где tож0
̅̅ ̅̅ ̅(m0,Λi) – значения среднего времени ожидания, рассчитанные для текущего 

количества станций обслуживания m=m0 и i-го значения Λ0,1. Параметр k 

обеспечивает заданный уровень корректировки времени ожидания k·tож0
̅̅ ̅̅ ̅ для 

различных комбинаций параметров системы. В рамках данной работы принято k=0,5 

и m0=5. Полученные значения m для каждого Λ0,1 представляют собой минимальное 

число обслуживающих устройств, при котором среднее время ожидания не 

превышает половины от его значения при m=m0.  

Выявлено, что при сокращении среднего времени ожидания, наличие во 

входном потоке заявок 0-го типа снижает требуемое количество обслуживающих 
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устройств. Эффект максимален при умеренных нагрузках (Λ0≈1) и сохраняется на 

уровне 6-7% при насыщении системы (Λ0>1). 

В п. 5.7 приведены результаты поиска сочетаний параметров т и μ, 

обеспечивающих выполнение условия: 

tож̅̅ ̅̅
i
(mi,μi

)=k·tож0
̅̅ ̅̅ ̅(m0,μ

i
),      (23) 

где tож0
̅̅ ̅̅ ̅(m0,μ

i
) – значения среднего времени ожидания, рассчитанные для m=m0 и i-го 

значения μ. Построена зависимость m(μ), отражающая минимальное количество 

обслуживающих устройств, необходимое для сокращения времени ожидания вдвое 

относительно m0=5. 

В п. 5.8 приведены результаты поиска сочетаний параметров m и ν, 

обеспечивающих выполнение условия: 

tож̅̅ ̅̅
i
(mi,νi)=k·tож0

̅̅ ̅̅ ̅(m0,νi),      (24) 

где tож0
̅̅ ̅̅ ̅(m0,νi) – значения среднего времени ожидания, рассчитанные для m=m0 и i-го 

значения ν. Построена зависимость m(ν), отражающая минимальное количество 

обслуживающих устройств, необходимое для сокращения времени ожидания вдвое 

относительно m0=5. 

Сделан вывод о том, что для приведенных исходных данных, в случае 

сокращения среднего времени ожидания tож0
̅̅ ̅̅ ̅ при малых значениях ν<0,5 требуются 

меньшие ресурсы (Δm0), нежели при малых значениях μ<0,5. Обратная ситуация 

наблюдается при ν>0,5 и μ>0,5. 

В п. 5.9 приведены результаты поиска сочетаний параметров μ и ν, 

обеспечивающих выполнение условия: 

tож̅̅ ̅̅
i
(μ

i
,νi)=k·tож0

̅̅ ̅̅ ̅(μ
0
,νi),      (25) 

где tож0
̅̅ ̅̅ ̅(μ

0
,νi) – значения среднего времени ожидания, рассчитанные для μ=μ0 и i-го 

значения ν.  

Выявлено, что с ростом количества обслуживающих устройств m и скорости 

обслуживания μ система становится менее чувствительна к изменению параметра 

интенсивности ухода заявок из очереди ν. 

В главе 6 даны практические рекомендации, которых следует придерживаться 

при применении результатов диссертационной работы к реальным объектам.  

В п. 6.1 обобщены допущения, принятые в разработанной модели СМО. 

В п. 6.2 приведен алгоритм проверки соответствия входного потока заявок 

пуассоновскому потоку на основании критерия согласия хи-квадрат Пирсона.  

В п. 6.3 приведен алгоритм проверки соответствия времени обслуживания 

заявок экспоненциальному распределению на основании критерия согласия хи-

квадрат Пирсона. 

В п. 6.4 приведен алгоритм проверки соответствия ограничения на время 

ожидания экспоненциальному распределению на основании критерия согласия хи-

квадрат Пирсона. 

В п. 6.5 приведен алгоритм расчета параметров СМО проектируемого или 

анализируемого объекта в стационарном режиме функционирования.  

В заключении в структурированном виде приводятся результаты проделанной 

работы и возможные перспективы дальнейшей разработки темы. 



17 

 

В приложении приводятся пример оценки соответствия входного потока 

распределению Пуассона и времени обслуживания экспоненциальному 

распределению, акт о внедрении результатов диссертационной работы, а также 

свидетельство о регистрации электронного ресурса.  

ЗАКЛЮЧЕНИЕ 

Основные результаты, полученные в данной работе, заключаются в 

следующем. 

1. Разработана математическая модель замкнутой СМО с учетом трех типов 

поступающих в систему заявок и ограничения на время ожидания. В общем виде 

получены формулы для расчета характеристик модели в стационарном режиме. 

2. С использованием метода Монте-Карло и языка программирования Python 

разработана имитационная модель замкнутой СМО, учитывающая три типа 

поступающих в систему заявок и ограничение на время ожидания. Предложенная 

модель обеспечивает эффективный расчет вероятностных характеристик СМО в 

нестационарном режиме функционирования. Получены результаты расчета времени 

выхода СМО на квазистационарный режим. 

3. Для частного случая, при котором вероятность полной загрузки системы 

пренебрежимо мала, во входном потоке отсутствуют «нетерпеливые» заявки и 

интенсивность обслуживания близка к интенсивности уходов «нетерпеливых» 

заявок, методом производящих функций получено решение системы 

дифференциальных уравнений Колмогорова. Сравнение аналитических результатов 

для частного случая с данными численного моделирования методом Монте-Карло 

показало их высокую схожесть, что подтвердило адекватность предложенной модели 

для описания динамики функционирования систем с аналогичной структурой в 

нестационарном режиме. 

4. Разработаны численные алгоритмы исследования СМО на предмет 

определения параметров модели, обеспечивающих требуемый уровень 

эффективности функционирования системы. Проведена количественная оценка 

требуемых минимальных мощностей системы для выхода на эффективный режим 

работы в случае двухкомпонентного и трехкомпонентного потока заявок. 

Проведенный анализ эффективных режимов работы по параметру относительной 

пропускной способности системы показал, что при добавлении «нетерпеливых» 

заявок в двухкомпонентный поток зависимость интенсивности обслуживания от 

суммарной интенсивности входного потока меняется со степенной на линейную. 

5. Разработаны рекомендации для применения и адаптации полученной 

модели к реальным объектам. 

6. Разработан комплекс специализированных программных средств для 

расчета ключевых характеристик СМО и оценки эффективности ее 

функционирования в стационарном и нестационарном режимах. 

Рекомендуется полученные формулы для расчета характеристик системы 

брать за основу для дальнейших исследований сложных стохастических процессов, 

включая анализ квазистационарных режимов и нахождение параметров, 

обеспечивающих эффективные режимы работы систем. 

Перспективы развития темы заключаются в применении полученных 

результатов в качестве универсального инструментария для оценки эффективности 
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функционирования систем с разнородными типами заявок, в которых имеют место 

уходы заявок из очереди и ограниченность источника, что позволит производить 

точную настройку в системах с циклическим характером функционирования, 

обеспечивая баланс между качеством обслуживания и ресурсозатратами.  
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